

Security Challenges for Underwater Acoustic Sensor Networks

Dmytro Ochkas, PhD Student

Directrice: Hélène LE BOUDER Encadrant: Alexander PELOV

Content

- 1. UASN Underwater Acoustic Sensor Networks
 - 1.1. UASN Structure and Topologies
 - 1.2. UASN vs LPWAN
- 2. Security Challenges in UASN
 - 2.1. Security Properties
 - 2.2. Security Challenges
- 3. Attacks on UASN and Mitigation
 - 3.1. Jamming
 - 3.2. Eavesdropping
 - 3.3. Message Tampering
 - 3.4. Spoofing
 - 3.5. Replay
 - 3.6 Routing
- 4. Conclusion

Underwater Acoustic Sensor Networks

Underwater Acoustic Sensor Networks

UASN - Underwater Acoustic Sensor Networks

- Acoustic wave communication
- Sensor nodes, sink nodes, and terrestrial gateways
- Collecting data and transmitting it to the application server

UASN wind farm cable monitoring [1]

Underwater Acoustic Sensor Networks

Underwater Acoustic Sensor Networks

UASN Structure and Topologies

UASN [1]

LPWAN [2]

Underwater Acoustic Sensor Networks

UASN Structure and Topologies

Multi-hop UASN [1]

FLG - AUV of Folaga type

FN - Fixed Node

C3 - Command and Control Center

Underwater Acoustic Sensor Networks

Comparing UASN and LPWAN

Criteria	UASN	LPWAN
Communication Type	Acoustic Wave	Electromagnetic Wave
Propagation Speed	~1500 m/s	~300,000,000 m/s
Bandwidth	few kHz	tens to hundreds of kHz
Range	Up to 30 km	Up to 15 km
Autonomy	1-6 months	1-10 years
Reliability	Highly unreliable (multipath, absorption, Doppler effect, scattering, noises)*	Moderate (multipath, scattering)
Bit Rate	~1 kbits/s	0.1 - ~100 kbits/s

Security Challenges in UASN

Security Challenges in UASN

Security Properties

Security Challenges in UASN

Security Challenges

Attacks on UASN and Mitigation

Attacks on UASN

Threat Landscape

Attacks on UASN

Threat Landscape

Attacks on UASN

Threat Landscape

Attacks on UASN

UASN Security Strategies

Attacks on UASN

Jamming

Mitigation

- Obscuring the communication
- Constant network monitoring for anomalies:
 - high packet loss
 - high signal strength with low throughput
 - frequent retransmissions
- Switching to another frequency
- Shutdown for a certain period

Source: Delphin Raj Kesari Mary, Eunbi Ko, Seung-Geun Kim, Sun-Ho Yum, Soo-Young Shin, and Soo-Hyun Park. A systematic review on recent trends, challenges, privacy and security issues of underwater internet of things. Sensors, 21(24), 2021. ISSN 1424-8220. doi: 10.3390/s21248262.

Attacks on UASN

Eavesdropping

Types

- Signal eavesdropping
- Message sniffing
- Traffic analysis

Mitigation

- Physical layer confidentiality
- Lightweight encryption

Attacks on UASN

Message Tampering

Mitigation

- Integrity
- Authentication tag, usually truncated to 2, 4, 8 bytes

Source: K. Masood Ahmed, R. Shams, F. H. Khan and M. -Á. Luque-Nieto, "Securing Underwater Wireless Sensor Networks: A Review of Attacks and Mitigation Techniques," in IEEE Access, vol. 12, pp. 161096-161133, 2024, doi: 10.1109/ACCESS.2024.3490498.

Attacks on UASN

Spoofing

Mitigation

- Reliable authentication mechanism
- Initial handshake (too expensive)
- Node identification mechanism
- Authentication tag

Attacks on UASN

Replay

Mitigation

- Message ID
- Effective nonce usage, e.g., with timestamp

Attacks on UASN

Routing

Sybil [2] Packet Packet Packet **Faulty Node S3** S2 Sybil Area

[1] Delphin Raj Kesari Mary, Eunbi Ko, Seung-Geun Kim, Sun-Ho Yum, Soo-Young Shin, and Soo-Hyun Park. A systematic review on recent trends, challenges, privacy and security issues of underwater internet of things. Sensors, 21(24), 2021. ISSN 1424-8220. doi: 10.3390/s21248262.

[2] K. Masood Ahmed, R. Shams, F. H. Khan and M. -Á. Luque-Nieto, "Securing Underwater Wireless Sensor Networks: A Review of Attacks and Mitigation Techniques," in IEEE Access, vol. 12, pp. 161096-161133, 2024, doi: 10.1109/ACCESS.2024.3490498.

Corrupted Data

Original Data

Normal Node

Sybil Node

Attacks on UASN

Routing

Mitigation

- Spoofing protection
- Secure localization
- Node isolation

Attacks on UASN

As for upper layer attacks...

- Lack of standardization
- As of today, poorly investigated

Conclusion

- Acoustic networks remain the main way of underwater communication despite the hostile environment.
- UASN have a lot of similarities with LPWAN but the conditions are even more restrictive and multi-hop communication is widely adopted.
- Threat landscape is large and the new attacks keep occurring even today.
- Research effort should continue to create an efficient lightweight security model for UASN.

Literature

- [1] Benoît Parrein, Fekher Khelifi, François Babin, Thierry Grousset, Jean-Marc Rousset, and Loïc Helloco. Underwater acoustic sensor network to monitor floating offshore wind: SEM-REV sea trials. In IEEE OCEANS, Limerick, Ireland, June 2023. URL https://hal.science/hal-04190985.
- [2] Delphin Raj Kesari Mary, Eunbi Ko, Seung-Geun Kim, Sun-Ho Yum, Soo-Young Shin, and Soo-Hyun Park. A systematic review on recent trends, challenges, privacy and security issues of underwater internet of things. Sensors, 21(24), 2021. ISSN 1424-8220. doi: 10.3390/s21248262.
- [3] K. Masood Ahmed, R. Shams, F. H. Khan and M. -Á. Luque-Nieto, "Securing Underwater Wireless Sensor Networks: A Review of Attacks and Mitigation Techniques," in IEEE Access, vol. 12, pp. 161096-161133, 2024, doi: 10.1109/ACCESS.2024.3490498.
- [4] Gianluca Dini and Angelica Lo Duca. A secure communication suite for underwater acoustic sensor networks. Sensors, 12(11):1513315158, 2012. ISSN 1424-8220. doi: 10.3390/s121115133. URL https://www.mdpi.com/1424-8220/12/11/15133
- [5] Pascal Thubert, Alexander Pelov, and Suresh Krishnan. Low-power wide-area networks at the ietf. IEEE Communications Standards Magazine, 1(1):76–79, 2017. doi: 10.1109/ MCOMSTD.2017.1600002ST.
- [6]S. Jiang, "On Securing Underwater Acoustic Networks: A Survey," in IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 729-752, Firstquarter 2019, doi: 10.1109/COMST.2018.2864127.

Stay Secure!

Dmytro Ochkas

Email: dmytro.ochkas@imt-atlantique.fr