CSMA for LoRa: choose which?

CSMA pour LoRa: quelle variante choisir?

Guillaume Gaillard and Congduc Pham

Presented on July 3rd, 2025

Guillaume Gaillard

Université de Pau, France

Advanced and disruptive IoT/AI technologies targeting the smallholder community for increased resilience

LoRa(WAN) in a dense collision domain

Collisions

- More devices
- More traffic

ALOHA → CSMA

- Many versions
- Many mechanisms
- Which one is best choice?

LoRa(WAN) in a dense collision domain

- ALOHA =
 - No Collision Avoidance
 - Transmit when ready
- Collision at a GW =
 - 2 or + transmissions
 - Same channel
 - Time overlap (on critical zone)
 - Not enough SINR
- Spares
 - Capture Effect
 - Hidden terminal

Carrier Sense Multiple Access (CSMA)

To avoid collisions

- In our context, only local info, no feedback
- A device can "only":
 - "Listen""Wait" (Back off BO)Change channel

and retry/repeat (Max #r tries)

- Transmit
- Discard

CSMA: listen, contention and retries

Other than CSMA?

- ALOHA → Collisions
- CS is not ideal, though (hidden terminal, near-far problem, etc.)
- Resource allocation requires sync and downlink
- Resolution techniques at GW are complementary

State machine of CSMA

State machine of CSMA

How do LoRa devices "Listen"?

- RSSI-based?
 - But LoRa operates/interferes/collides below noise floor
- => 1) Semtech's Channel Activity Detection (CAD)
- => 2) RX mode
 - Proposal 2023 too energy expensive
 - => CAD+RX outside LBT

How do LoRa devices "Listen"?

RSSI-based?

0

But LoRa operates/interferes/collides below noise floor

- => 1) Semtech's Channel Activity Detection (CAD)
- => 2) RX mode
 - Proposal 2023 too energy expensive
 - => CAD+RX outside LBT

1) Channel Activity Detection (CAD)

CADs in sequence

- Min #n negative CADs on a given channel
 - All negative => channel is free
 - Increase reliability
- Max #x channel changes per try
 - Until one is free
 - Each requires a radio config change

CADs in sequence

- Min #n negative CADs on a given channel
 - All negative => channel is free
 - Increase reliability
- Max #x channel changes per try
 - Until one is free
 - Each requires a radio config change

2) Listen with RX mode

Slope-specific

More complex, may miss preamble, longer, energy hungrier than CAD To be interrupted at end of header
Gives MAC info, size of payload

2) Listen with RX mode

Known size = know wait time = NAV Network Allocation Vector

2) Listen with RX mode

- CANL 2023:
 - Collision Avoidance by Neighbor Listening for Dense LoRa Networks.
 ISCC, Jul 2023
 - RX in LBT
 - Assume CAD not reliable
- Too energy expensive
 - in LBT

Proposal: CAD + RX

- RX only when a CAD switches Busy
 - Target preamble only
- Get NAV length

State machine of CSMA

What to do when channel is Busy

- (Binary exponential) passive Back Off
 - = wait passively an (increasing) random time
 - = non persistent CSMA
- Change to another channel
- Actively check channel remains busy from persistent CSMA

And retry

ABORT

What to do when channel is Busy

And max #r retries reached

- (Ultimate) passive Back Off
 - = you know it is busy => wait
- Discard (abort)

Retry LBT CLEAR

=> And transmit

State machine of CSMA

What to do when channel is Clear

- (Residual) active BO
 - = Check while waiting, do not reset
- Passive BO and recheck
 - = wait passively, recheck with n CADs
- Transmit directly
- Do n CADs+RX
 - RX if last CAD true
 - Then NAV+CH (threshold)

=> And transmit

Combine all these?

Protocol name	LBT	BUSY	CLEAR	
basic	sCADs	epBO		
full_basic	mCADs	epBO		\rightarrow
BEB_passive	sCADs	epBO	pBO+CADs	
full_BEB_passive	mCADs	epBO	pBO+CADs	
BEB_active	sCADs	epBO	raBO	
full_BEB_active	mCADs	epBO	raBO	
CH_passive	sCADs	СН	pBO+CADs	
LoRa_CSMA	sCADs	СН	raBO	\rightarrow
wait_passive	sCADs	waBO	pBO+CADs	
full_wait_passive	mCADs	waBO	pBO+CADs	
wait_active	sCADs	waBO	raBO	
full_wait_active	mCADs	waBO	raBO	
xCANL_CAD	mCADs	NAV/CH	pBO+CADs	\rightarrow

→ ref

→ TR LoRa Alliance

→ prop

Which one is best?

Depends

- Conditions (density, scale, traffic load)
- Objective (PDR, energy, delay)
- Variants (BO sizes, LBT constraints)

Evaluation

- Simulation
- 64 variants

Many simulation results

Objective	PDR	J/B	Latency	
Variant with best	PDR	J/B	PDR	J/B
basic		\mathcal{V}		
full_basic			\mathcal{V}	
LoRa_CSMA		(\mathcal{V})		\mathcal{V}
xCANL_CAD	\mathcal{V}			

Concluding remarks

- Avoid systematic channel hopping:
 - homogeneous channels
- Use simple approaches are energy efficient;
- Run complex ones if you target PDR performance.

LoRa(WAN) in a dense collision domain

- Asynchronous
- No Downlink
- SF12
- Interference
- Obstruction
- 8 channels * 125 kHz
- Random CH sequence/dev
- Multiple GWs

PDR

Enerav efficiencv

