

Indoor Localization Based on LoRa 2.4 GHz

Jana Koteich

Oana Iova, Fabrice Valois

3 July, 2025

Journées LPWAN 2025

≻Introduction

Plan

Crash course on Indoor localization

Hands on Experiments

Work in Progress

≻Introduction

Plan

> Crash course on Indoor localization

Hands on Experiments

Work in Progress

Context

Why do we need indoor localization?

Buildings

Motivation

Why use LoRa 2.4Ghz?

		LoRa 2.4GHz		LoRa	GNSS	Sigfox	5G	WiFi	BLE	UWB	RFID
Dominant Use: Indoor c Outdoor	r	In & Out	(ut	Out	Out	Out	In	In	In	In
Location accuracy (m)		2	2	0-200	2-3	500	1	5	2	0.3	0.01
Operating Range (km)		2-5	1	0-15	'000s	10-15	0.2-0.3	0.2	0.2-0.3	0.03	0.2
Network Density (aka anchors)		Very Low		ery ow	Ultra Low	Very Low	Very Low	High	High	Very High	Very High

Ref: https://www.youtube.com/watch?v=cyayif_nla8&list=LL&index=6

Motivation

Why use LoRa 2.4Ghz?

	LoRa 2.4GHz	LoRa	GNSS	Sigfox	5G	WiFi	BLE	UWB	RFID
Dominant Use: Indoor or Outdoor	In & Out	Out	Out	Out	Out	In	In	In	In
Location accuracy (m)	2	20-200	2-3	500	1	5	2	0.3	0.01
Operating Range (km)	2-5	10-15	'000s	10-15	0.2-0.3	0.2	0.2-0.3	0.03	0.2
Network Density (aka anchors)	Very Low	Very Low	Ultra Low	Very Low	Very Low	High	High	Very High	Very High

Ref: https://www.youtube.com/watch?v=cyayif_nla8&list=LL&index=6

Motivation

Why use LoRa 2.4Ghz?

Higher Bandwidth Compared to Sub-GHz LoRa

2.4 GHz allows for higher bandwidth configurations, enabling **faster data rates** and **shorter time-on-air**, which is beneficial for real-time localization (Good Trade-off between Range vs. Accuracy)

Support for Ranging

SX1280 chipset supports **time-of-flight based ranging**, enabling direct distance estimation between nodes, which is **key for accurate localization**.

≻Introduction

Plan

> Crash Course on Indoor localization

Hands on Experiments

Work in Progress

Indoor Localization Techniques

Trilateration

https://www.uni-kiel.de/de/tf/forschen/institut-informatik/verteilte-systeme

Angulation

https://www.uni-kiel.de/de/tf/forschen/institut-informatik/verteilte-systeme

Fingerprining

https://de.mathworks.com/help/wlan/ug/three-dimensional-indoor-positioning-with-802-11az-fingerprinting-and-deep-learning.html

Indoor Localization Techniques

In our work, we will focus first on **Trilateration**

Where is my Tag?

Anchor 1: (x1, y1)

Lost tag: (x, y)

Anchor3: (x3, y3)

Anchor2: (x2, y2)

Where is my Tag?

Ranging Techniques

Received Signal Strength (RSS) Time Difference of Arrival (TDoA)

Angle of Arrival (AoA)

Time of Flight (ToF)

Ranging Techniques

Strength (RSS)

((p))

IBeacons 1

RSSI 1

RSSI 3

RSSI 2

Time Difference of Arrival (TDoA)

Angle of Arrival (AoA)

≻Introduction

Plan

> Crash course on Indoor localization

Hands on Experiments

Work in Progress

Hardware - SX1280 Dev kit

Microcontroller: STM32 Nucleo-64 Development Board

Radio board: SX1280RF1ZHP RF Module

SX1280 Ranging - ToF

SX1280 ranging feature is based upon the measurement of a round trip time of flight (RTToF) between a pair of SX1280 transceivers.

Figure 1: Principle of SX1280 Ranging

Semtech, AN1200.31 SX1280 EVK Ranging How To, v1.0, 2019

General Configuration

	Existing
Tx Power	-18dBm → 13 dBm
SF	5 → 10
BW	400 KHz, 800 KHz , 1600 KHz
CR	4/5 , 4/6, 4/7, 4/8

SF: $6 \rightarrow 10$

BW: 800, 1600

Experiments: Scenario

Environment description:

☐ LoS: 20 m

☐ LoS: 40m

□ NLoS: 21m (same floor)

□ NLoS: 40m (1st Floor)

Mean Values

20m Line of Sight

SF\BW	800	1600
6	19.81/0.82	19.54/0.57
7	22.20/0.68	20.66/0.40
8	21.66/0.58	22.32/0.83
9	23.90/1.34	23.12/2.26
10	23.56/1.81	23.52/1.20

40m Line of Sight

SF\BW	800	1600
6	35.72/2.29	37.21/2.42
7	34.64/0.82	36.82/1.19
8	35.25/0.74	39.36/1.09
9	36.26/0.58	34.26/0.36
10	37.07/0.62	37.40/0.88

21m Non-Line of Sight

SF\BW	800	1600
6	26.22/1.01	27.07/1.98
7	26.96/0.76	27.44/0.98
8	27.96/0.63	27.60/0.89
9	26.72/0.84	24.96/0.83
10	26.44/1.07	24.58/0.70

40m Non-Line of Sight

SF\BW	800	1600
6	42.14/1.87	44.06/4.04
7	39.50/1.25	41.02/3.01
8	45.85/14.27	45.98/0.88
9	47.49/0.95	42.94/0.62
10	48.41/1.06	44.90/0.71

Best Configuration

Scenario	Optimal Config	Accuracy (%)	Precision (%)
20m LOS	SF6/ BW1600	97.7	97.1
40m LOS	SF8/ BW1600	98.4	97.2
40m NLOS	SF7/ BW800	98.8	96.8
21m NLOS	SF10/ BW1600	83.0	97.1

Comparison With State of The Art

20m Line of Sight						
SF\BW 800 1600						
6	19.81	19.54				
7	22.20	20.66				
8	21.66	22.32				
9	23.90	23.12				
10	23.56	23.52				

Table 1: 20m LoS

(our experiment)

20 m	$400 \mathrm{kHz}$	$800 \mathrm{kHz}$	1600kHz
SF5	27.67	27.53	33.48
SF6	26.23	29.52	37.11
SF7	25.42	28.71	37.18
SF8	28.21	31.23	33.19
SF9	27.67	30.15	26.95
SF10	24.78	32.40	22.10

Table 2: 20m LoS

Ashok Vaishnav, "Design and Evaluation of an Indoor Localization System using 2.4 GHz LoRa"

Comparison With State of The Art

21m Non-Line of Sight						
SF\BW 800 1600						
6	26.22	27.07				
7	26.96	27.44				
8	27.96	27.60				
9	26.72	24.96				
10	26.44	24.58				

Table 3: 21m NLoS

(our experiment)

20 m	$400 \mathrm{kHz}$	$800 \mathrm{kHz}$	$1600 \mathrm{kHz}$
SF5	31.91	23.61	34.32
SF6	28.75	28.80	40.20
SF7	27.04	31.73	39.77
SF8	22.98	34.93	34.16
SF9	13.07	33.62	25 96
SF10	6.535	13.47	17.35

Table 4: 20m NLoS

Ashok Vaishnav, "Design and Evaluation of an Indoor Localization System using 2.4 GHz LoRa"

Discussion

Challenges

Multipath: Reflections cause ranging errors.

Clock resolution: Time-based measurements need precise clocks.

Environment dependency: People, obstacles affect ranging reliability.

Semtech, Theory and Principle of Advanced Ranging, internal document, 2021

≻Introduction

Plan

> Crash course on Indoor localization

Hands on Experiments

Work in Progress

Work in Progress

- Conduct further experiments using the SX1280 in various conditions.
- Explore methods to improve the accuracy of ranging.
- Design an indoor localization algorithm based on the enhanced ranging technique.

Thank You!

