

GAIA-Initiative

Wildlife research and conservation with Al and satellite-based mioty® technology

Florian Leschka
Fraunhofer IIS, Erlangen
Department RF and SatCom Systems

Supported by:

on the basis of a decision by the German Bundestag

Wildlife Research and Nature Conservation with AI and Satellite IoT Technology

Research of and with vultures

Why vultures?

- Little researched
- Movement profile covers a large area
- The vultures' swarm intelligence (discovering carcasses) can deliver important information on mass animal deaths due to diseases

Movement Profile of tagged vultures in Africa

Basic Idea for Poaching Prevention – Making use of the 3 intelligences

Vulture approaches dead animal and eats Al evaluation of the acceleration data triggers camera

Camera captures image

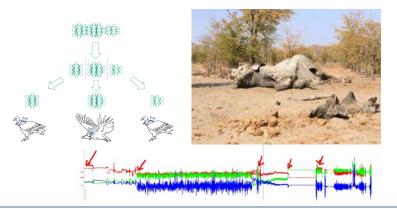
Onboard Al classifies alarm status

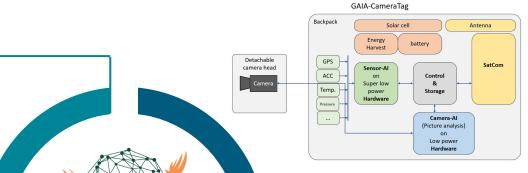
Swarm Intelligence → Extreme Edge Networks mioty®-SatCom module transmits alarm

LEO satellite receives data

Data is forwarded to ground station Automatic data processing

User (biologist) analyzes data


GAIA-Inititiative – Key Aspects of Research Areas



Wildlife Observation and Field Work (Leibniz IZW)

Camera Tag Design & Implementation

Florian Leschka: florian.leschka@iis.fraunhofer.de

From terrestrial to satellite

IoT via satellite example concept

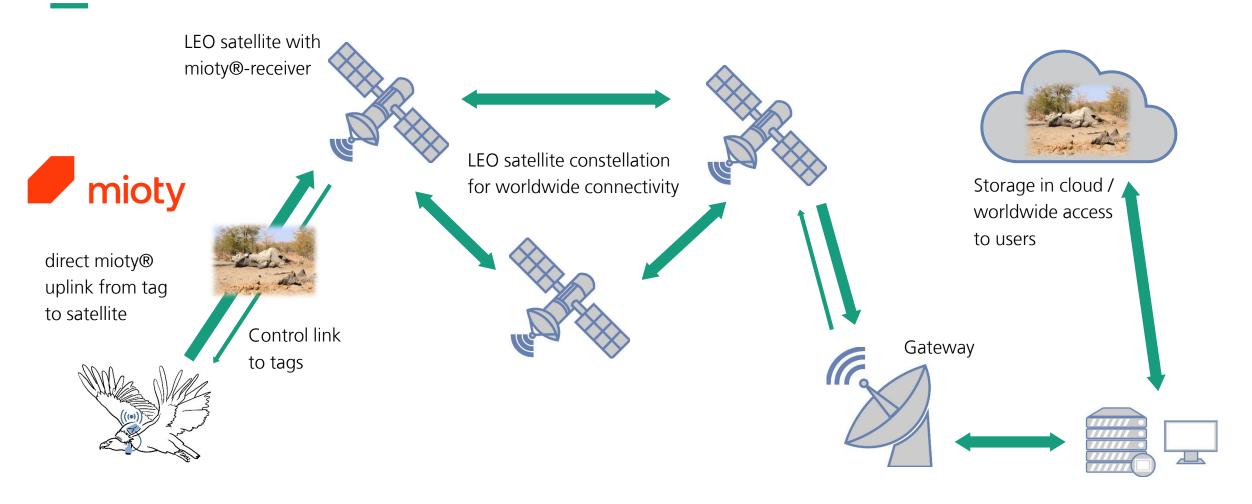
Typical terrestrial case

Satellite equivalent (concept)

Battery operation for many years, use cases: e.g., agriculture, shipment tracking, maritime

Satellite constellation with inter satellite links (ISL)

> Ground station feeds data to services



GAIA-Sat-IoT System

mioty® data transfer via LEO satellites for future constellation deployment

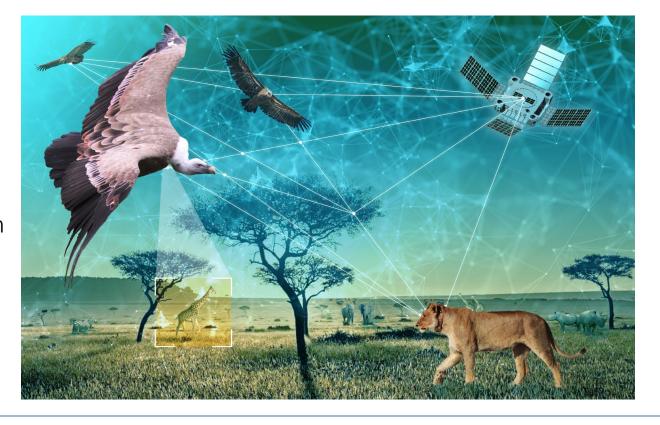
GAIA-Sat-IoT / SyNaKI (part of GAIA-Initiative)

Developments of mioty® technology for SatCom Scenario

Development of single components for LEO satellite IoT systems

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages


Raumfahrtmanagement

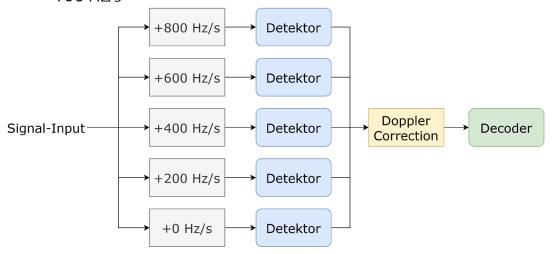
Our key aspect of both projects:

- Higher data rate for mioty®
- Bigger message size for mioty®
- Tag development for S- and L-Band
- BiDi-Support via Satellite
- Enhanced Doppler compensation (*)
- Receiver architecture for distributed LEO constellation
- prepare mioty® technology for LEO satellite mission
 mioty

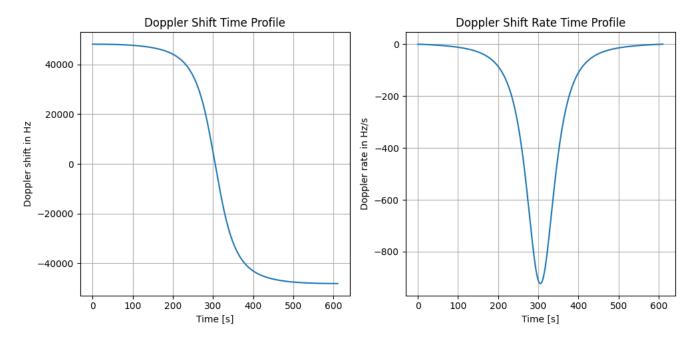
(*) based on patented ideas

GAIA - Lab Demonstrator

Overview


Assumptions and Design Goals

Goals


- No changes to Nodes (Transmitters)
- Less than 2dB Performance Loss compared to Terrestrial at 1% PER

Assumptions

- Doppler Profile: Max Values see figure on the right
- Terrestrial Receiver is already robust to a Doppler rate of ~100 Hz/s

Schematic overview of Doppler robust receiver

Doppler Profile for LEO sat at 400 km, Radio Frequency 2000 MHz

See: S. Roy, U. L. Dang, J. Kneissl, G. Kilian, R. Meyer and F. Obernosterer, "Time Variant Doppler Compensation for TS-UNB," 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW), Rhodes Island, Greece, 2023, pp. 1-5, doi: 10.1109/ICASSPW59220.2023.10192999.

Results and comparison to LoRa

Doppler Robustness

- mioty®
 - Receiver with Doppler compensation developed and tested
 - Waveform can stay untouched (Rx compensation)
 - Performance depends on the receiver and link budget
 - Only slight degradation ($\leq 2dB @ PER = 1\%$)

Note: Classical LoRa is 4.5 dB worse than mioty® at 200 Hz/s

Mioty® vs LoRa study report https://mioty-alliance.com/mioty-vs-lora-study-report/

PER at different values for the Doppler-Rate using a Doppler-compensating mioty® receiver

See: "mioty comparative Study Report" by TU Ilmenau, https://mioty-alliance.com/mioty-vs-lora-study-report/

Measurements

Number of received mioty messages during an emulated LEO pass

- Emulation frequency: 2 GHz
- Satellite alltitude: 1500 km
- 50 Messages per second
- 75% packet loss without compensation
- 1% packet loss with Compensation
- Practical identical performance of terrestrial receiver

Measurements

Number of received mioty messages during a emulated LEO pass

- Emulation frequency: 2 GHz
- Satellite alltitude: 1500 km
- 50 Messages per second
- 75% packet loss without compensation
- 1% packet loss with Compensation
- Practical identical performance of terrestrial receiver

IoT via Satellite

System Capacity Considerations

System Capacity

- Number of successful packet transmissions
- Measured within a specific time-frame
- Considered within a given channel bandwidth

Capacity importance in NTN

- Large cell → crucial for handling more users
- High capacity: Essential for high user density without service degradation
- From economic perspective:
 - Supporting a wide range of commercial applications necessary
- Not feasible to densify existing deployments (done in LoRa TN networks)

System Capacity is THE key feature for successful SatCom IoT business cases

See: J. Mrazek, S. Kisseleff, C. Rohde, J. Robert, J. Kneissl and F. Leschka, "mioty superiority over both LoRa-versions in satellite-IoT applications," 41st International Communications Satellite Systems Conference (ICSSC 2024), Seattle, USA, 2024, pp. 63-70, doi: 10.1049/icp.2024.4613.

mioty's capacity is better by at least a factor of 8 compared to LoRa FHSS!

Study by TU Ilmenau: https://mioty-alliance.com/mioty-vs-lora-study-report/

Capacity Analysis

- Capacity simulations need to model realistic node distribution, i.e. more nodes with lower reception power.
- Dynamic range for terrestrial: 69 dB
- Dynamic range for satellite: 10 dB
- Higher Capacity for satellite system:
 - due to smaller dynamic range weaker messages don't get overshadowed by stronger ones.

Doubled capacity for mioty® over satellite!

Current detailed analysis show that direct to satellite mioty® system can deliver **6.25 Mio Messages/day/200kHz** instead of 3.6 Mio

From Terrestrial to Satellite IoT

Why mioty® for (satellite) IoT networks?

KPI System Capacity: 6.25M Messages/day/200kHz/beam

Key Takeaways & Outlook

Next Step: GAIA-MISSION ...

Delayed due to budget restrictions at caused by elections in Germany this

Key Takeaways and Outlook

Our Offer:

Fraunhofer IIS supports national and international SatCom players in:

- Consulting
- R&D in SatCom
- System Design
- System Simulations
- Constellation Design
- Test & Verification

GAIA-Initiative: developing a new generation of animal tags equipped with on-board artificial intelligence (AI) & camera and satellite-based IoT communication technology (mioty®)

Envisioned **GAIA-MISSION** for **demonstrating entire system** in the field for wildlife observation and nature conservation

Scalable Satellite IoT network: more applications from other verticals will be show-cased in the future

Looking for partners and satcom/loT operators for future demonstration and testing

Key Takeaways and Outlook

Our Offer:

Fraunhofer IIS supports national and international SatCom players in:

- Consulting
- R&D in SatCom
- System Design
- System Simulations
- Constellation Design
- Test & Verification

mioty® can easily be adopted to specific SatCom IoT scenarios

2 System Capacity is key feature for successful SatCom business cases

TS-UNB/mioty® outperforms IoT/LPWAN protocol competitors

Trends in IoT: AI, Distributed Computing & (Satellite) Swarms

Wanna Meet our Vulture Rudi?

Our Vulture Rudi GAIA Business Developer

From Paris Air Show 2025 to

... Wacken 2025 Heavy Metall Festival

References

- 1. Fraunhofer IIS https://www.iis.fraunhofer.de/
- 2. Fraunhofer IIS SatCom https://www.iis.fraunhofer.de/en/ff/kom/satkom.html
- 3. Fraunhofer IIS Satellite IoT https://www.iis.fraunhofer.de/en/ff/kom/satkom/satellite_iot.html
- 4. GAIA-Initiative https://www.gaia-initiative.org
- 5. mioty® Alliance <u>http://mioty-alliance.com/</u>
- 6. Mioty® vs LoRa study report https://mioty-alliance.com/mioty-vs-lora-study-report/
- 7. GAIA Sat-IoT http://gaia-sat-iot.de
- 8. SyNaKI <u>http://synaki.de</u>
- 9. Paper E2UT https://ieeexplore.ieee.org/document/9384419
- 10. Paper "Time Variant Doppler Compensation for TS-UNB" https://ieeexplore.ieee.org/document/10192999
- 11. Paper "Doppler Localisation of TS-UNB IoT Nodes from LEO satellites" https://ieeexplore.ieee.org/document/10572039
- 12. Paper ICSSS 2024: mioty® Superiority over Both LoRa®-Versions in Satellite-IoT Applications https://ieeexplore.ieee.org/document/10915777

Fraunhofer-Institut für Integrierte Schaltungen IIS

Contact

Florian Leschka
Group Manager "System Design"
RF and SatCom Systems Department
Division Communication Systems
Florian.leschka@iis.fraunhofer.de

Fraunhofer IIS
Am Wolfsmantel 33
91058 Erlangen
Germany
www.iis.fraunhofer.de