Scheduling Heuristics in Practice -Flexible Flow Shops and Flow Shops with Reentry

IFAC 2022 – Nantes, France -- June, 2022

Michael Pinedo

In collaboration with: Juntaek Hong, Kangbok Lee, Kwansoo Lee, Kyunduk Moon, and Tae-Sun Yu

Variations of Flow Shop Scheduling

Part I

Scheduling in Continuous Cast Steelmaking

Flexible flow shops

Part II

Scheduling in Semiconductor Manufacturing

Flow Shops with Reentry

Part I Scheduling in Continuous Cast Steelmaking

(joint work with Juntaek Hong, Kangbok Lee, Kwansoo Lee, Kyunduk Moon)

- Steelmaking Problem description
- Solution method: Iterated Greedy Matheuristic
- Experimental results
- Conclusion

Introduction

Pressure on Steelmaking Industry against Facility Expansions

REUTERS	July 13, 2019:	≡	Bloomberg Green	March 12, 2021:

COMMODITIES NEWS

JULY 13, 2019 / 2:49 PM / UPDATED 2 YEARS AGO

China plans to toughen emission checks on steel mills

BEIJING (Reuters) - China will continue to enforce production restrictions in heavy industry in winter this year and will tighten its emission assessment on steel mills when granting exemptions from curbs already in place, an environment ministry official said Green

China Pollution Crackdown Exposes Rule Breakers in Top Steel Hub

China's top environmental official vowed to reinforce pollution curbs after inspections found some steel mills were violating output restrictions and faking documents.

A team led by Huang Runqiu, the minister of ecology and environment, on Thursday found four mills in the steelmaking hub of Tangshan weren't complying with production cuts put in place to reduce heavy pollution.

→ Expansion of conventional facility is impossible

Introduction

Pressure on Steelmaking Industry against Facility Expansion

Conventional facilities will be used for 30 years

A steelmaker's plan: commercialize by 2050

→ Efficient operations of existing facilities are still crucial

Introduction

Steel Production

→ Steelmaking – Continuous Casting (SCC) process is typically the bottleneck

SCC Process

Charge: a pot of molten steel

Semi-finished products:

Bloom

Billet

7

SCC Process

SCC Process

SCC Scheduling Problem

Parameters

- SCC environment
 - Stages, machines, transportation time
- Charge
 - Required refining stages
 - Processing time on each machine
 - Due date (at the last stage)
- Cast: a sequence of charges at the last stage (processed one after another).
 - Setup time at the last stage before processing the first charge

Variables

- Machine assignment of each charge at each stage
- Completion time of each charge at each stage

SCC environment

- Stages & machines
- Transportation time between each pair of machines

Charge

- Required refining stages & Processing time on each machine
- Due date (at the last stage)

D - ----

Cast

- A sequence of charges
- Setup time at the last stage before processing the first charge

		Required stages
Steelmaking	Casts: 1 2 3 4 5 6	$1: SM \rightarrow CC$
SM-1 -		$\begin{array}{c} 2 \\ \hline \end{array} \\ \vdots \\ SM \rightarrow PE1 \rightarrow PE2 \rightarrow CC \\ \hline \end{array}$
SM-2 -		$3 : SW \rightarrow CC$
SIVI-3 -		5 : SM \rightarrow CC
SIM-4		$\overline{6}$: SM \rightarrow RF2 \rightarrow RF3 \rightarrow CC
Refining 1		
RF1-1 -		
RF1-2	>	
Refining 2		
RF2-2 -		
	→	
Refining 3		
RF3-1 -		
RF3-2		
Continuous Casting		
CC-1 -		
CC-2 -		

- Machine assignment of each charge at each stage
- Completion time of each charge at each stage

Parameters

- SCC environment
 - Stages, machines, transportation time
- Charge
 - Required refining stages
 - Processing time on each machine
 - Due date (at the last stage)
- Cast: a sequence of charges & setup time
- Variables
 - Machine assignment of each charge at each stage
 - Completion time of each charge at each stage

- Objective: to minimize
 - Cast breaks
 - Total waiting time (between stages)
 - Total earliness
 - Total tardiness
 - Imagine how the objective function of a MIP would look like !!
- Constraints
 - At most one charge at a time in each machine
 - CC stage
 - One CC machine for all charges in a cast
 - Maximum waiting time (between stages)``

Related Literature (quite extensive)

Machine Environments

- Flexible (Hybrid) Flow Shops
- Steel Making Continuous Cast

(e.g., Ruiz and Vazquez-Rodriguez (2010)) (e.g., Tang, Liu, Rong, and Yang (2002))

Heuristic Procedures

- Genetic Algorithms
- Iterated Greedy (IG) Heuristics
- Constraint Guided Heuristic Search
- Matheuristics
- Hybrid Heuristics

(e.g., Deb et al. (2002))

- (e.g., Ruiz and Stuetzle (2007))
- (e.g., Gay, Schaus, De Smedt (2014))
- (e.g., Boschetti and Maniezzo (2022))

				Ol	ojectiv	/es		Const	Constraints		Data		Method	
	Author (year)	Problem type [*]	Ca-CC fix	$E\&T^{\dagger}$	Completion time ^{\ddagger}	Waiting time [‡]	Max waiting time	Diff. Ch routes	MC uniformity ^{††}	Controllable time ^{‡‡}	# RF stages	Max charges	Algorithm	Time limit (sec)
	Tang et al. (2002)	I		Ch		W			Р		1	12	LR	222
	Pacciarelli and Pranzo (2004)	Ι			Μ		0		Р		3	114	Heu	324
	Bellabdaoui and Teghem (2006)	Ι	0		Μ		0		Р	\mathbf{C}	1	8	MIP	6
	Xuan and Tang (2007)	Ι			W	W			Р		1	12	LR	623
Literature	Atighehchian, Bijari, and Tarkesh (2009)	Ι			Μ	S	0		\mathbf{R}		1	108	ACO+NLP	300
	Pan et al. (2013)	I	0	Ca		S		-	Р		1	120	ABC	30
	Sun and Wang (2013)	I		Ca		S	0	0	R		4	7	Heu	-
on	Tang, Zhao, and Liu (2014)	R	0		M	S	0	0	Р	A		100	DE	60
	Mao et al. $(2014a)$	R	0	Ca	8	8		0	P	А	2	120		116
000	Mao et al. $(2014b)$	1	0	Ca		D C			P		3	40	ER	20
SCC	Shihi Bellabdaoui and Teghem (2014)	I	ŏ	Ca	S	5	0		R	C	3	49	MIP	20
	Mao et al. (2015)	ī	ŏ		š	W	Ĭ		P	Ŭ	2	120	LR	54
	Hao et al. (2015)	Ι	0			W		0	Р		1	900	PSO	150
Schedulind	Jiang et al. (2015)	Ι	0	Ca		S		0	Р	\mathbf{C}	2	100	DE+VNS	400
oonedding	Li, Pan, and Mao (2016)	\mathbf{R}	0	Ca		\mathbf{S}			Р	Α	1	120	FOA+IG	100
(2002 2024)	Pan (2016)	Ι			\mathbf{M}	\mathbf{S}			Р		4	180	ABC	54
(2002-2021)	Long et al. (2016)	Ι	0	Ch		\mathbf{S}		0	Р		2	-	GA+LP	400
	Jiang et al. (2016)	Ι	0		\mathbf{S}	\mathbf{S}		0	Р	\mathbf{C}	2	150	Heu	30
	Yu, Chai, and Tang (2016)	\mathbf{R}	0			\mathbf{S}		0	Р	Α	1	30	Heu	-
	Cui and Luo (2017)	Ι	0	Ca		W			Р		2	20	LR	60
	Jiang, Liu, and Hao (2017)	I	0	Ca		S		0	P		2	120	GA+LS	600
	Long, Zheng, and Gao (2017)	R	0	Ch		W		0	Р	A		66	GA+VNS	250
Very important	Sun et al. (2017) Ecol Zener di and Derme (2018)	R	0	Ch	м	W			P	A		40		135
	Fazer Zarandi and Dorry (2018)	T	0		IVI	2			Г			150	CPO	220
problem!!	Li et al. (2018)	T			м	5			P			120	ABC	100
problomm	Long et al. $(2018a)$	ī			101	S		0	P	А	5	104	GA	-
	Long et al. $(2018h)$	ī	0		м	s		ŏ	P	A	5	140	GA	450
	Peng et al. $(2018b)$	R	ŏ	Ca		š		0	P	A	1 1	240	ABC	10
	Sbihi and Chemangui (2018)	I	õ		м	~	0		R	С	1	49	GA+LP	1800
	Cui, Luo, and Wang (2020)	Ι	0	Ca		W			Р		1	45	LR	150
	Peng et al. (2020)	\mathbf{R}	0	Ca		S			Р		1	120	ICA+LS	30
0000.00.40	Han et al. (2021)	Ι			W	W		0	Р		3	62	LR	1200
2023-06-18	This paper (2021)	Ι		Ch		S	0	0	R		3	36	IG+MIP	600

Contribution to the Literature:

An efficient method useful in practice

Parameters

- SCC environment
 - Stages, machines, transportation time
- Charges
 - Required refining stages
 - Processing time on each machine
 - Due date (at the last stage)
- Cast: a sequence of charges & setup time
- Variables
 - Machine assignment of each charge at each stage
 - Completion time of each charge at each stage

- Objective: to minimize
 - Cast breaks
 - Total waiting time (between stages)
 - Total earliness
 - Total tardiness

Constraints

- At most one charge at a time in each machine
- Continuous Casting (CC) stage
 - One CC machine for all charges in a cast
- Maximum waiting time (between stages)

Overview

- We put one cast at a time
- while preserving the former schedule
 - machine assignment
 - precedence relationship
- We rearrange some casts and some charges by destruction & construction
- In construction procedure, we preserve the current destructed schedule
 - machine assignment
 - precedence relationship
- How to choose charges
 - DC cast : charges in a cast
 - DC charge : charges in a time window
- We solve the entire MIP problem given an incumbent solution

Initial Heuristic (IH)

 Cast sequence:
 1
 2
 3
 4
 5
 6
 7
 8
 9

Initial Heuristic (IH)

 Cast sequence:
 1
 2
 3
 4
 5
 6
 7
 8
 9

Initial Heuristic (IH)

- while preserving the former schedule
 - machine assignment of charge
 - precedence relationship between charges

2 3 5 Cast sequence: 1 6 4 7 8 9

DC Cast (Dcast) Step

- machine assignment of charge
- precedence relationship between charges

Cast sequence:

2

1

3

5

6

8

9

7

4

DC Cast (Dcast) Step

2023-06-18

9

DC Charge (Dcharge) Step

D is time window in which charges are being rearranged and may end up being assigned to different machines. (charges of which the completion time in at least one stage are in the time window).

Time windows of successive stages need to be delayed (in order not to have to consider too many jobs)

DC Charge (Dcharge) Step

- while preserving the other charges' schedule
 - machine assignment of charge
 - precedence relationship between charges

5

6

8

9

7

4

Compare IGM Schedule with Schedule Generated by Initial Heuristic (IH)

 Cast sequence:
 1
 2
 3
 4
 5
 6
 7
 8
 9

Test Data Summary

- Three problem sizes
 - small: 2~3 casts, 6~12 charges
 - medium: 3~4 casts, 15~24 charges
 - practical: 4~7 casts, 30~36 charges
- Random processing times
 - SM: 45~55 min
 - RF: 30~40 min
 - CC: 35~45 min
- Transportation time: 10 minutes between all machines
- Maximum waiting time: 30 minutes

Total 90 problem instances
>30 small-sized problems
>30 medium-sized problems
>30 practical-sized problems

Comparison of algorithms

- Iterated Greedy Matheuristic (IGM)
- Solving the whole MIP model (MIP)
- NSGA-II **
- Simple genetic algorithm (GA)

- \rightarrow 10 minutes
- \rightarrow 20 minutes time limit

** Non-Dominated Sorting Genetic Algorithm –II by **Deb, Pratap, Agarwal, Meyarivan (2002)** *IEEE Transactions on Evolutionary Computation*

(GA Method that is especially suitable for multi-objective optimization problems).

The average optimality gaps

Optimality gap

Objective value over time on practical size problem #3

31

Average performance of IGM over time on practical size problems

Conclusions Steelmaking

- IGM is effective and may also be applied to:
 - Practical hybrid flowshop scheduling problem considering:
 - sequence-dependent setup times
 - precedence constraints
 - machine eligibility constraints
 - Scheduling problems in more general machine environments (e.g., flexible job shop)

Literature: Hong, J., Moon, K., Lee, K., Lee, K., & Pinedo, M. L. (2022).

"An iterated greedy matheuristic for scheduling in steelmaking-continuous casting process"

International Journal of Production Research, 60(2), 623-643.

Part II

Scheduling in Semiconductor Manufacturing

(joint work with Tae-Sun Yu)

- Waferfab problem description
- Flow shops with Reentry
- Priority rules
- Conclusions

Classical Shop Scheduling

Conventional 'Flow Shop'

- n jobs are processed by m machines sequentially.
- Each machine i = 1, ..., m is visited only once.

"Find the Optimal Job Sequence" (the optimal permutation of 1, ..., n)

Flow Shops with 'Reentry'

Reentrant Flow Shop

- Each job is allowed to *recirculate* the system,
 - i.e., some machines can be visited more than once.

 Motivations: Job Repair, Job Rework, Repetitive Processing, etc. (Examples: Semiconductor, LED, Solar Cell, Printed Circuit Board, Textile Fabric, etc.)

Semiconductor Manufacturing

Wafer Fabrication Stage - Reentry is a common occurrence

- Types of Job Reentry
 - Repetition
 - When a recipe requires a process (or equipment) to be repeatedly used
 - General Wafer Fabrication Procedure: involves more than 24 layers
 - 1 Photolithography for 1 Layer

Many Layers of Transistors & Interconnects

[1] "Chemistry at the bottom: Atomic layer deposition," Materialstoday.

Semiconductor Manufacturing

Wafer Fabrication Stage - Reentry is a common occurrence

- Types of Job Reentry
 - Repetition
 - Multi-Patterning Technology:
 - Multiple Photolithography Exposures & Etching to Increase Feature Density

[1] "Chemistry at the bottom: Atomic layer deposition," Materialstoday.

Semiconductor Manufacturing

Wafer Fabrication Stage - Reentry is a common occurrence

- Types of Job Reentry
 - Rework
 - After the inspection when a process is found to be abnormally completed
 - Even in modern fabs some process steps' rework rate are greater than 80%
 - Ex: EUV Tools for *Photolithography* step \rightarrow Essential for nodes less than 5nm

$150nm \rightarrow 110nm \rightarrow 80nm \rightarrow 55nm \rightarrow 40nm \rightarrow 28nm \rightarrow 20nm \rightarrow 14nm \rightarrow 10nm \rightarrow 7nm \rightarrow 5nm \rightarrow 3nm \rightarrow ???$

Challenges in using EUV

Yield= **40~70%**

[1] "Chemistry at the bottom: Atomic layer deposition," Materialstoday.

Notations

- Job j = 1, ..., n recirculates N_j times \rightarrow Job j proceeds N_j loops.
- Each job is processed by machines i = 1, ..., m sequentially.
- Let p_{ijk} be the *processing time* of job *j* on machine *i* in *loop k*.
- Let C_j be the *completion time* of job j.

Scheduling Measure

• C_{max} : The maximum completion time $\max_{j=1,...,n} C_j \rightarrow Makespan$

Preliminaries

"General flow shops are NP-hard for most scheduling measures when $m \ge 3$ "

- Therefore, we consider the following subclasses of the Ordered Flow Shop
 - **Proportionate** Flow Shop [Smith et al. 1975] $\rightarrow p_{ij} = p_j$ for all i = 1, ..., m and j = 1, ..., n.
 - Machine-Ordered Flow Shop: $\rightarrow p_{ij} = p_i$ for all i = 1, ..., m and j = 1, ..., n.

Makespan Invariance Property for Conventional Proportionate or Machine Ordered Flow Shops without Reentry

: Any permutation sequence yields the same makespan and is optimal

Makespan Minimization Job Reentry with Same Number of Loops

- Makespan Invariance Property does not hold when Job Reentry is considered
 - That is, the makespan is not the same for all permutation schedules

We first examine the makespan minimization problem

Loopwise Cyclic (LC) Sequence

We first define a particular class of permutation sequences: LC Sequences

```
Loopwise Cyclic (LC) Sequence

Condition (i):

Lower indexed loops are sequenced earlier than higher indexed loops,

i.e., loop \ell_{jk} precedes loop \ell_{j'k'} for all j' \neq j and k' > k.

Condition (ii):

Job processing order on all m machines are the same,

i.e., each job maintains the same priority within each loop index.
```

- We confirm that the Makespan Invariance Property now holds among all possible LC sequences
- The following theorem is established as well:

Extension: Loop Effects

Theorem

• Suppose that the job processing time p_{ijk} depends on the loop index k:

 $p_{ijk} = p_j + q_k$ $(q_k: \text{ loop effect of loop } k)$

"The makespan invariance property does not hold even among LC sequences"

If q_k is increasing in k, the makespan is minimized by prioritizing the jobs of an LC sequence according to SPT.

*SPT≡ Shortest Processing Time First

Further Extension by Makespan Reversibility: LPT is optimal when q_k is decreasing in k

Managerial Insights on LC-SPT

Key Insights

- Application of SPT rule to LC sequences:
 - "Minimizes the machine idleness between the loops of the bottleneck job"

Managerial Insights on LC-SPT

To minimize such Machine Idleness caused by the bottleneck job,

the workload between two consecutive loops of the bottleneck job has to be maximized

SPT rule maximizes the workload between consecutive loops of the bottleneck job in LC sequences

LC-SPT (LC-LPT) is optimal when loop effect q_k is increasing (decreasing) in k.

Reentry with Different Number of Loops

Dynamic Dispatching Method: *MRL-Dispatching*

More Remaining Loops First (MRL)

A job with larger number of remaining loops has priority over a job with a smaller number of remaining loops.

• Static method: LC-MRL minimizes makespan under certain conditions

Dynamic method: MRL dispatching minimizes makespan under certain conditions

[1	2	3	4	1	2	5		1			
_		1	2	3	4	1	2	5		1		_
			1	2	3	4	1	2	5		1	
				1	2	3	4	1	2	5		1

Reentry with Different Number of Loops

Dynamic Dispatching Method: *LRL-Dispatching*

Least Remaining Loops First (LRL)

A job with a smaller number of remaining loops has priority over a job with a larger number of remaining loops.

- Static method: LC-LRL minimizes the Total Completion Time (flow time) under fairly general conditions
- Dynamic method: LRL dispatching minimizes the Total Completion Time under fairly general conditions

Optimality Conditions of MRL-Dispatching

Experimental Results on MRL-Dispatching:

- Average Optimality $Gap \leq 1\%$
- Worst Case Performance = $\frac{C_{max}(MRL)}{C_{max}(OPT)}$ = 1.07.
- Special Case Analysis (*Agreeability Conditions*):
 - MRL-Dispatching minimizes the makespan in reentrant flow shops if $p_{ijk} = p$ for all *i*, *j*, *k*.
 - MRL-Dispatching minimizes the makespan if
 - (*i*) $np_1 \leq \sum p_i$ in a machine-ordered flow shop; or
 - (*ii*) $np_j \leq \sum p_j$ for all *j* in a proportionate flow shop.

Future Extensions of Reentry Models

Extensions of Machine Environment

 $\bullet p_{ijk} = \alpha_i + \beta_j$

• $p_{ijk} = p_j/s_i$ (different machine speeds)

Different Objective Functions (Current Research)

- Total Completion Time → Least Remaining Loops First (LRL)
- Due date related objective functions

Stochastic Environment (Current Research)

- Stochastic Processing Time (Stochastic Convexity)
- Probabilistic Reentry

Future Research Directions for Flow Shops

Flexible Flow Shops with Reentry

Probabilistic Reentry

Hybrid Techniques Using also Constraint Programming

- Framework Design
- Hybrid Heuristics

Initial heuristic (IH)

- On the empty schedule,
- we put one cast at a time
- while preserving the former schedule
 - machine assignment of charge
 - precedence relationship between charges

Destruction & Construction (DC)

- We select some charges to be rearranged
 - DC cast (Dcast): change a cast's position
 - DC charge (Dcharge): change machine assignments

Overview

 We rearrange selected charges by solving a MIP subproblem which is much smaller than the MIP model describing the whole problem

≻to achieve a good initial schedule

>to find a better schedule

> IGM: To search for a good schedule by $IH \rightarrow n * [D_{cast} \rightarrow D_{charge} \rightarrow MIP_{sub}] \rightarrow$

(MIP improvement -- potentially optimal)