
Chapter 2
Incremental Statistical Measures

Katharina Tschumitschew and Frank Klawonn

Abstract Statistical measures provide essential and valuable information about
data and are needed for any kind of data analysis. Statistical measures can be used in
a purely exploratory context to describe properties of the data, but also as estimators
for model parameters or in the context of hypothesis testing. For example, the mean
value is a measure for location, but also an estimator for the expected value of a
probability distribution from which the data are sampled. Statistical moments of
higher order than the mean provide information about the variance, the skewness,
and the kurtosis of a probability distribution. The Pearson correlation coefficient is a
measure for linear dependency between two variables. In robust statistics, quantiles
play an important role, since they are less sensitive to outliers. The median is an
alternative measure of location, the interquartile range an alternative measure of
dispersion. The application of statistical measures to data streams requires online
calculation. Since data come in step by step, incremental calculations are needed to
avoid to start the computation process each time new data arrive and to save memory
so that not the whole data set needs to be kept in the memory. Statistical measures
like the mean, the variance, moments in general, and the Pearson correlation
coefficient render themselves easily to incremental computations, whereas recursive
or incremental algorithms for quantiles are not as simple or obvious. Nonstationarity
is another important aspect of data streams that needs to be taken into account.
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This means that the parameters of the underlying sampling distribution might
change over time. Change detection and online adaptation of statistical estimators is
required for nonstationary data streams. Hypothesis tests like the χ2- or the t-test can
be a basis for change detection, since they can also be calculated in an incremental
fashion. Based on change detection strategies, one can derive information on the
sampling strategy, for instance the optimal size of a time window for parameter
estimations of nonstationary data streams.

2.1 Introduction

Statistics and statistical methods are used in almost every aspect of modern life, like
medicine, social surveys, economy, and marketing, only to name few of application
areas. A vast number of sophisticated statistical software tools can be used to search
and test for structures and patterns in data. Important information about the data
generating process is provided by the simple summary statistics. Characteristics
of the data distribution can be described by summary statistics like the following
one.

• Measures of location: The mean and quantiles provide information about location
of the distribution. Mean and median are representatives for the center of the
distribution.

• Measures of spread: Common measures for the variation in the data are standard
deviation, variance, and interquartile range.

• Shape: The third and fourth moments provide information about the skewness
and the kurtosis of a probability distribution.

• Dependence: For instance, the Pearson correlation coefficient is a measure for the
linear dependency between two variables. Other common measures for statistical
dependency between two variables rank correlation coefficients like Spearman’s
rho or Kendall’s tau.

Apart from providing information about location and spread of the data distribution,
quantiles also play an important role in robust data analysis, since they are less
sensitive to outliers.

Summary statistics can be used in a purely exploratory context to describe
properties of the data, but also as estimators for model parameters of an assumed
underlying data distribution.

More complex and powerful methods for statistical data analysis are for instance
hypothesis tests. Statistical hypothesis testing allows us to discover the current state
of affairs and therefore help us to make decisions based on the gained knowledge.
Hypothesis test can be applied to a great variety of problems. We may need to test
just a simple parameter or the whole distribution of the data.

However, classical statistics operates with a finite, fixed data set. On the other
hand, nowadays it is very important to continuously collect and analyze data
sets increasing with time, since the (new) data may contain useful information.
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Sensor data as well as the seasonal behavior of markets, weather, or animals are
in the focus of diverse research studies. The amount of recorded data increases
each day. Apart from the huge amount of data to be dealt with, another problem
is that the data arrive continuously in time. Such kind of data is called data stream.
A data stream can be characterized as an unlimited sequence of values arriving step
by step over time. One of the main problems for the analysis of data streams is
limited computing and memory capabilities. It is impossible to hold the whole data
set in the main memory of a computer or computing device like an ECU (electronic
control unit) that might also be responsible for other tasks than just analyzing the
data. Moreover, the results of the analysis should be presented in acceptable time,
sometimes even under very strict time constraints, so that the user or system can
react in real time. Therefore, the analysis of data streams requires efficient online
computations. Algorithms based on incremental or recursive computation schemes
satisfy the above requirements. Such methods do not store all historical data and do
not need to browse through old data to update an estimator or an analysis, in the
ideal case, each data value is touched only once.

Consequently the application of statistical methods to data streams requires
modifications to the standard calculation schemes in order to be able carry out the
computations online. Since data come in step by step, incremental calculations are
needed to avoid to start the computation process from scratch each time new data
arrive and to save memory, so that not the whole data set must be kept in the memory.
Statistical measures like the sample mean, variance and moments in general and the
Pearson correlation coefficient render themselves easily incremental computation
schemes, whereas, for instance, for standard quantiles computations the whole data
is needed. In such cases, new incremental methods must be developed that avoid
sorting the whole data set, since sorting requires in principal to check the whole
data set. Several approaches for the online estimation of quantiles are presented for
instance in [1, 9, 19, 25].

Another important aspect in data stream analysis is that the data generating
process does not remain static, i.e., the underlying probabilistic model cannot be
assumed to be stationary. The changes in the data structure may occur over time.
Dealing with nonstationary data requires change detection and on-line adaptation.
Different kinds of nonstationarity have been classified in [2]:

• Changes in the data distribution: the change occurs in the data distribution. For
instance, mean or variance of the data distribution may change over time.

• Changes in concept: here concept drift refers to changes of a target variable. A
target variable is a variable, whose values we try to predict based on the model
estimated from the data, for instance for linear regression it is the change of the
parameters of the linear relationship between the data.

– Concept drift: concept drift describes gradual changes of the concept. In
statistics, this usually called structural drift.

– Concept shift: concept shift refers to an abrupt change which is also referred
to as structural break.
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Hence change detection and online adaptation of statistical estimators are
required for nonstationary data streams. Various strategies to handle nonstationarity
are proposed, see for instance [11] for a detailed survey of change detection
methods. Statistical hypothesis tests may also be used for change detection. Since
we are working with data streams, it is required that the calculations for the
hypothesis tests can be carried out in an incremental way. For instance, the χ2-
test and the t-test1 render themselves easily to incremental computations. Based on
change detection strategies, one can derive information on the sampling strategy,
for instance the optimal size of a time window for parameter estimations of
nonstationary data streams [3, 26].

This chapter is organized as follows. Incremental computations of the mean,
variance, third and fourth moments and the Pearson correlation coefficient are
explained in Sect. 2.2. Furthermore two algorithms for the on-line estimation of
quantiles are described in Sect. 2.3. In Sect. 2.4 we provide on-line adaptations of
statistical hypothesis test and discuss different change detection strategies.

2.2 Incremental Calculation of Moments and the Pearson
Correlation Coefficient

Statistical measures like sample central moments provide valuable information
about the data distribution. So the sample mean or empirical mean (first sample
central moment) is the measure of the center of location of the data distribution,
the measure of variability is sample variance (second sample central moment). The
third and fourth central moments are used to compute skewness and kurtosis of
the data sample. Skewness provides us the information about the asymmetry of the
data distribution and kurtosis give us an idea about the degree of peakedness of the
distribution.

Another important statistic is the correlation coefficient. The correlation coeffi-
cient is a measure for linear dependency between two variables.

In this section, we introduce incremental calculations for these statistical mea-
sures.

In the following, we consider a real-valued sample x1, . . . ,xt , . . . (xi ∈ R for all
i ∈ {1, . . . , t, . . .}).

Definition 2.1. Let x1, . . . ,xt be a random sample from the distribution of the
random variable X .

The sample or empirical mean of the sample of size t, denoted by x̄t , is given by
the formula

x̄t =
1
t

t

∑
i=1

xi. (2.1)

1For precise definitions, see Sect. 2.4.
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Equation (2.1) cannot be applied directly in the context of data streams, since it
would require to consider all sample values at each time step. Fortunately, (2.1) can
be easily transformed into an incremental scheme.

x̄t =
1
t

t

∑
i=1

xi

=
1
t

(
xt +

t−1

∑
i=1

xi

)

=
1
t
(xt +(t− 1) x̄t−1)

= x̄t−1 +
1
t
(xt − x̄t−1) . (2.2)

The incremental update (2.2) requires only three values to calculate the sample mean
at time point t:

• The mean at time point t− 1.
• The sample value at time point t.
• The number of sample values so far.

The empirical or sample variance can be calculated in an incremental fashion in
a similar way.

Definition 2.2. Let x1, . . . ,xt be a random sample from the distribution of the
random variable X . The empirical or sample variance of a sample of size t is given by

s2
t =

1
t− 1

t

∑
i=1

(xi− x̄t)
2 (2.3)

Furthermore, st =
√

s2
t is called the sample standard deviation.

In order to simplify the calculation, we use following notation:

m̃2,t =
t

∑
i=1

(xi− x̄t)
2 (2.4)

In the following, the formula for incremental calculation is derived from (2.4)
using (2.2).

m̃2,t − m̃2,t−1 =
t

∑
i=1

x2
i − tx̄2

t −
t−1

∑
i=1

x2
i +(t− 1) x̄2

t−1

= x2
t − tx̄2

t +(t− 1) x̄2
t−1

= x2
t − x̄2

t−1 + t
(
x̄2

t−1− x̄2
t
)
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= x2
t − x̄2

t−1 + t (x̄t−1− x̄t)(x̄t−1 + x̄t)

= x2
t − x̄2

t−1 + t
(

x̄t−1− x̄t−1−
1
t
(xt − x̄t−1)

)
(x̄t−1 + x̄t)

= x2
t − x̄2

t−1 +(x̄t−1− xt)(x̄t−1 + x̄t)

= (xt − x̄t−1)(xt + x̄t−1− x̄t−1− x̄t)

= (xt − x̄t−1)(xt − x̄t) .

Consequently, we obtain the following recurrence formula for the second central
moment:

m̃2,t = m̃2,t−1 +(xt − x̄t−1) (xt − x̄t) (2.5)

The unbiased estimator for the variance of the sample according to (2.5) is given by

s2
t =

1
t− 1

M2,t =
(t− 2)s2

t−1 +(xt − x̄t−1)(xt − x̄t)

t− 1
. (2.6)

Definition 2.3. Let x1, . . . ,xt be a random sample from the distribution of the
random variable X . Then the k-th central moment of a sample of size t is defined by

mk,t =
1
t

t

∑
i=1

(xi− x̄t)
k. (2.7)

In order to simplify the computations and to facilitate the readability of the text, we
use the following expression for the derivation.

m̃k,t =
t

∑
i=1

(xi− x̄t)
k, (2.8)

therefore m̃k,t = t ·mk,t .
For the third- and fourth-order moments, which are needed to calculate skewness

and kurtosis of the data distribution, incremental formulae can be derived in a similar
way, in the form of pairwise update equations for m̃3,t and m̃4,t .

m̃3,t =
t−1

∑
i=1

(xi− x̄t)
3 +(xt − x̄t)

3

=
t−1

∑
i=1

(
xi− x̄t−1−

1
t
(xt − x̄t−1)

)3

+

(
xt − x̄t−1−

1
t
(xt − x̄t−1)

)3

=
t−1

∑
i=1

((xi− x̄t−1)− b)3 +(tb− b)3
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=
t−1

∑
i=1

(
(xi− x̄t−1)

3− 3b(xi− x̄t−1)
2 + 3b2 (xi− x̄t−1)− b3

)
+(t− 1)3 b3

= m̃3,t−1− 3bm̃2,t−1− ((t− 1)b3 +(t− 1)3 b3

= m̃3,t−1− 3bm̃2,t−1+ t (t− 1)(t− 2)b3 (2.9)

where b = xt−x̄t−1
t .

From (2.9), we obtain a one-pass formula for the third-order centered statistical
moment of a sample of size t:

m̃3,t = m̃3,t−1− 3
(xt − x̄t−1)

t
m̃2,t−1 +

(t− 1)(t− 2)
t2 (xt − x̄t−1)

3 . (2.10)

The derivation for the fourth-order moment is very similar to (2.9) and thus is not
detailed here.

m̃4,t = m̃4,t−1− 4
(xt − x̄t−1)

t
m̃3,t−1 + 6

(
xt − x̄t−1

t

)2

m̃2,t−1

+
(t− 1)

(
t2− 3t + 3

)

t3 (xt − x̄t−1)
4 . (2.11)

The results presented above offer the essential formulae for efficient, one-pass
calculations of statistical moments up to the fourth order. Those are important
when the data stream mean, variance, skewness, and kurtosis should be calculated.
Although these measures cover the needs of the vast majority of applications for data
analysis, sometimes higher-order statistics should be used. For the computation of
higher-order statistical moments, see for instance [6].

Now we derive a formula for the incremental calculation of the sample correla-
tion coefficient.

Definition 2.4. Let x1, . . . ,xt be a random sample from the distribution of the
random variable X and y1, . . . ,yt be a random sample from the distribution of the
random variable Y . Then the sample Pearson correlation coefficient of the sample
of size t, denoted by rxy,t , is given by the formula

rxy,t =
∑t

i=1 (xi− x̄t) (yi− ȳt)

(t− 1)sx,t sy,t
(2.12)

where x̄t and ȳt are the sample means of X and Y and sx,t and sy,t are the sample
standard deviations of X and Y , respectively.

The incremental formula for the sample standard deviation can be easily derived
from the incremental formula for sample variance (2.6). Hence, only the numerator
of (2.12) needs to be considered further. Furthermore, the numerator of (2.12)
represents the sample covariance sxy,t .
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Definition 2.5. Let x1, . . . ,xt be a random sample from the distribution of the
random variable X and y1, . . . ,yt be a random sample from the distribution of the
random variable Y . Then the sample covariance sxy,t of the sample of size t is
given by t

sxy,t =
∑t

i=1 (xi− x̄t) (yi− ȳt)

t− 1
(2.13)

where x̄t and ȳt are the sample means of X and Y and sx,t and sy,t are the sample
standard deviations of X and Y , respectively.

The formula for the incremental calculation of the covariance is given by

(t− 1)sxy,t =
t−1

∑
i=1

(xi− x̄t) (yi− ȳt)+ (xt − x̄t) (yt − ȳt)

=
t−1

∑
i=1

((xi− x̄t−1)− bx)((yi− ȳt−1)− by)+ (t− 1)2 bxby

= (t− 2)sxy,t−1 + t (t− 1)bxby (2.14)

where bx = (xt−x̄t−1)
t and by = (yt−ȳt−1)

t . Hence, the incremental formula for the
sample covariance is

sxy,t =
(t− 2)
(t− 1)

sxy,t−1 +
1
t
(xt − x̄t−1) (yt − ȳt−1) (2.15)

Therefore, to update the Pearson correlation coefficient, we have to compute the
sample standard deviation and covariance first and subsequently use (2.12).

Above in this section, we presented incremental calculations for the empirical
mean, empirical variance, third and fourth sample central moments and sample cor-
relation coefficient. These statistical measures can also be considered as estimators
of the corresponding parameters of the data distribution. Therefore, we are interested
in the question how many values xi do we need to get a “good” estimation of the
parameters. Of course, as we deal with a data stream, in general we will have a large
amount of data. However, some application are based on time window techniques.
For instance, for change detection methods presented in the section (Sect. 2.4). Here
we need to compare at least two samples of data; on that account, the data have to be
split into smaller parts. To answer the question about the optimal amount of data for
statistical estimators, we have to analyze the variances of the parameter estimators.
The variance of an estimator shows how efficient this estimator is.

Here we restrict our considerations to a random sample from a normal dis-
tribution with expected value 0. Let X1, . . . ,Xt be independent and identically
distributed (i.i.d.) random variables following a normal distribution, Xi ∼ N

(
0, σ2

)

and x1, . . . ,xt are observed values of these random variables.
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Fig. 2.1 Variances from bottom to top of parameter estimators for the expected value, the variance
and the third moment of a standard normal distribution

The variance of the estimator of the expected value2 X̄t = 1
t ∑t

i=1 Xi is given by

Var (X̄t) =
σ2

t
. (2.16)

The variance of the unbiased estimator of the variance S2 = 1
t−1 ∑t

i=1 (Xi− X̄t)
2

is given by

Var
(
S2

t
)
=

2
(t− 1)

σ4. (2.17)

The variance of the distribution of the third moment is shown in (2.18) (see [6]
for more detailed information)

Var (M3,t) =
6(t− 1)(t− 2)

t3 σ6. (2.18)

Figure 2.1 shows (2.16), (2.17), and (2.18) as functions in t for σ2 = 1 (standard
normal population). It is obvious that for small amounts of data, the variance of the
estimators is quite large, consequently more values are needed to obtain a reliable
estimation of distribution parameters. Furthermore, the optimal sample size depends
on the statistic to be computed. For instance, for the sample mean and a sample
of size 50, the variance is already small enough, whereas for the third moment
estimator to have the same variance, many more observations are needed.

We apply the same considerations to the sample correlation coefficient. Let X
and Y be two random variables following normal distributions and let X1, . . . ,Xt
and Y1, . . . ,Yt be i.i.d. samples of X and Y , respectively: Xi ∼ N

(
0, σ2

x
)

and

2We use capital letters here to distinguish between random variables and real numbers that are
denoted by small letters.
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Fig. 2.2 Asymptotic variance of the sample correlation coefficient

Yi ∼ N
(
0, σ2

y
)
. Assume the correlation between X and Y is equal to ρXY . Then

the asymptotic variance of the sample correlation coefficient is given by (see [7])

Var (RXY,t)≈
(
1−ρ2

XY

)2

t
. (2.19)

Attention should be paid to the asymptotic nature of (2.19). This formula can be
used only for sufficiently large t (see [7]). Equation (2.19) is illustrated in Fig. 2.2
as a function in t for ρXY = 0.9. Since for different values of ρXY , the plots are very
similar, they are not shown here.

In this section, we have provided equations for incremental calculation of
the sample mean, sample variance, third and fourth moments and the Pearson
correlation coefficient. These statistics allow us to summarize a set of observations
analytically. Since we assume that the observations reflect the population as a
whole, these statistics give us an idea about the underlying data distribution. Other
important summary statistics are sample quantiles. Incremental approaches for
quantiles estimation are described in the next section.

2.3 Incremental Quantile Estimation

Quantiles play an important role in statistics, especially in robust statistics, since
they are not or less sensitive to outliers. For q ∈ (0,1), the q-quantile has the
property that q · 100% of the data are smaller and (1− q) · 100% of the data are



2 Incremental Statistical Measures 31

larger than this value. The median, i.e., the 50% quantile, is a robust measure of
location and the interquartile range3 is a robust measure of spread. Incremental or
recursive techniques for quantile estimation are not as obvious as for statistical
moments, since for the sample quantile computation the entire sorted data are
needed. Nevertheless, there are techniques for incremental quantile estimation. In
this section, we describe two different approaches. First approach is restricted to
continuous symmetric unimodal distributions. Therefore, this method is not very
useful for all real world data. The second approach is not restricted to any kind
of distribution and is not limited to continuous random variables. We also provide
experimental results for both algorithms for different kinds of distributions.

2.3.1 Incremental Quantile Estimation for Continuous
Random Variables

Definition 2.6. For a random variable X with cumulative distribution function FX ,
the q-quantile (q∈ (0,1)) is defined as inf{x∈R | FX(x)≥ q}. If xq is the q-quantile
of a continuous random variable, this implies P(X ≤ xq) = q and P(X ≥ xq) = 1−q.

For continuous random variables, an incremental scheme for quantile estimation
is proposed in [10]. This approach is based on the following theorem.

Theorem 2.1. Let {ξt}t=0,1,... be a sequence of identically distributed independent
(i.i.d.) random variables with cumulative distribution function Fξ . Assume that the
density function fξ (x) exists and is continuous in the α-quantile xα for an arbitrarily
chosen α (0 < α < 1). Further let the inequality

fξ (xα)> 0 (2.20)

be fulfilled. Let {ct}t=0,1,... be a (control) sequence of real numbers satisfying the
conditions

∞

∑
t=0

ct = ∞,
∞

∑
t=0

c2
t < ∞. (2.21)

Then the stochastic process Xt defined by

X0 = ξ0, (2.22)

Xt+1 = Xt + ctYt+1 (Xt , ξt+1) , (2.23)

3The interquartile range is the midrange containing 50% of the data and it is computed as the
difference between the 75%- and the 25%-quantiles: IQR = x0.75− x0.25.
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with

Yt+1 =

{
α− 1 if ξt+1 < Xt ,
α if ξt+1 ≥ Xt ,

(2.24)

almost surely converges to the quantile xα .

The proof of the theorem is based on stochastic approximation and can be found
in [18]. A standard choice of the sequence {ct}t=0,1,... is ct = 1/t. However, con-
vergence might be extremely slow for certain distributions. Therefore, techniques
to choose a suitable sequence {ct}t=0,1,..., for instance, based on an estimation of
the probability density function of the sampled random variable, are proposed in
[10, 17].

Although this technique of incremental quantile estimation has only minimum
memory requirement, it has certain disadvantages.

• It is only suitable for continuous random variables.
• Unless the sequence {ct}t=0,1,... is well chosen, convergence can be extremely

slow.
• When the sampled random variable changes over time, especially when the ct

are already close to zero, the incremental estimation of the quantile will remain
almost constant and the change will be unnoticed.

In the following, we present an algorithm to overcome these problems.

2.3.2 Incremental Quantile Estimation

Here we provide a more general approach which is not limited to continuous random
variables. First we describe an algorithm for incremental median estimation, which
can be generalized to arbitrary quantiles. Since this algorithm is not very suitable
for noncentral quantiles, we modify this approach in such a way that it yields good
results for all quantiles.

2.3.2.1 Incremental Median Estimation

Before we discuss the general problem of incremental quantile estimation, we first
focus on the special case of the median, since we will need the results for the median
to develop suitable methods for arbitrary quantiles.

For the incremental computation of the median we store a fixed number, a buffer
of m sorted data values a1, . . . ,am in the ideal case the m

2 closest values left and the m
2

closest values right of the median, so that the interval [a1,am] contains the median.
We also need two counters L and R to store the number of values outside the interval
[a1,am], counting the values left and right of the interval separately. Initially, L and
R are set to zero.
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Table 2.1 A small example
data set t 1 2 3 4 5 6 7 8 9

Data 3.8 5.2 6.1 4.2 7.5 6.3 5.4 5.9 3.9

The algorithm works as follows. The first m data points x1, . . . ,xm are used to
fill the buffer. They are entered into the buffer in increasing order, i.e., ai = x[i]
where x[1] ≤ . . . ≤ x[m] are the sorted values x1, . . . ,xm. After the buffer is filled, the
algorithm handles the incoming values xt in the following way:

1. If xt < a1, i.e., the new value lies left of the interval supposed to contain the
median, then Lnew := Lold + 1.

2. If xt > am, i.e., the new value lies right of the interval supposed to contain the
median, then Rnew := Rold + 1.

3. If ai ≤ xt ≤ ai+1 (1 ≤ i < m), xt is entered into the buffer at position ai or ai+1.
Of course, the other values have to be shifted accordingly and the old left bound
a1 or the old right bound am will be dropped. Since in the ideal case, the median
is the value in the middle of the buffer, the algorithm tries to achieve this by
balancing the number of values left and right of the interval [a1,am]. Therefore,
the following rule is applied:

a. If L < R, then remove a1, increase L, i.e. Lnew := Lold + 1, shift the values
a2, . . . ,ai one position to the left and enter xt in ai.

b. Otherwise remove am, increase R, i.e. Rnew := Rold + 1, shift the values
ai+1, . . . ,am−1 one position to the right and enter xt in ai+1.

In each step, the median q̂0.5 can be easily calculated from the given values in the
buffer and the counters L and R by

q̂0.5 =

⎧
⎨

⎩

a L+m+R
2 −L if t is odd,

a L+m+R−1
2 −L

+a L+m+R+1
2 −L

2 if t is even.
(2.25)

It should be noted that it can happen that at least one of the indices L+m+R
2 −L,

L+m+R−1
2 − L and L+m+R+1

2 − L are not within the bounds 1, . . . ,m of the buffer
indices and the computation of the median fails. The interval length am− a1 can
only decrease and at least for continuous distributions X with probability density
function fX (q0.5) > 0, where q0.5 is the true median of X , it will tend to zero with
increasing sample size. In an ideal situation, the buffer of m stored values contains
exactly the values in the middle of the sample. Here, we assume that at this point in
time the sample consists of m+ t values (Table 2.1).

Table 2.2 illustrates how this algorithm works with an extremely small buffer of
size m = 4 based on the data set given in Table 2.1.

In the following, we generalize and modify the incremental median algorithm
proposed in the previous section and analyze the algorithm in more detail.
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Table 2.2 The development
of the buffer and the two
counters for the small
example data set in Table 2.1

t L a1 a2 a3 a4 R

4 0 3.8 4.2 5.2 6.1 0
5 0 3.8 4.2 5.2 6.1 1
6 0 3.8 4.2 5.2 6.1 2
7 1 4.2 5.2 5.4 6.1 2
8 2 5.2 5.4 5.9 6.1 2
9 3 5.2 5.4 5.9 6.1 2

2.3.2.2 An Ad hoc Algorithm

This algorithm for incremental median estimation can be generalized to arbitrary
quantiles in a straightforward manner. For the incremental q-quantile estimation
(0 < q < 1), only case 3 requires a modification. Instead of trying to get the same
values for the counters L and R, we now try to balance the counters in such a way that
qR≈ (1−q)L holds. This means, step 3a is applied if L < (1−q)t holds, otherwise
step 3b is carried out. t is the number of data sampled after the buffer of length m
has been filled.

Therefore, in the ideal case, when we achieve this balance, a proportion of q of
the data points lies left and a proportion of (1− q) lies right of the interval defined
by the buffer of length m.

Now we are interested in the properties of the incremental quantile estimator
presented above. Since we are simply selecting the k-th order statistic of the
sample, at least for continuous random variables and larger pre-sampling sizes, we
can provide an asymptotic distribution of the order statistic and therefore for the
estimator.

Assume, the sample comes from a continuous random variable X and we are
interested in an estimation of the q-quantile xq. Assume furthermore that the
probability density function fX is continuous and positive at xq. Let ξ t

k (k = ⌊tq⌋+1)
denote the k-th order statistic from an i.i.d. sample. Then ξ t

k has an asymptotic
normal distribution [7]

N
(

xq;
q(1− q)
t f 2 (xq)

)
(2.26)

From (2.26), we can obtain valuable information about the quantile estimator.
In order to have a more efficient and reliable estimator, we want the variance

of (2.26) to be as small as possible. Under the assumption that we know the data
distribution, we can compute the variance of ξ t

k .
Let X be a random variable following a standard normal distribution and assume

we have a sample x1, . . . ,xt of X , i.e., these values are realizations of the i.i.d. random
variables Xi ∼ N (0, 1). We are interested in the median of X . According to (2.26),
the sample median ξ t

⌊0.5t⌋+1 follows asymptotically a normal distribution:

ξ t
⌊0.5t⌋+1 ∼ N

(
0;

π
2t

)
. (2.27)
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Fig. 2.3 Variance from bottom to top of X̄ and ξ t
k under the assumption of a standard normal

distribution of X

Figure 2.3 shows the variance of the order statistic ξ t
⌊0.5t⌋+1 as a function in t

when the chosen quantile is q = 0.5, i.e., the median, and the original distribution
from which the sample comes is a standard normal distribution N(0;1). The second
curve in the figure corresponds to the variance of the sample mean.

The variance of the sample mean X̄ is only slightly better than that of the order
statistic ξ t

⌊0.5t⌋+1, nevertheless we should keep in mind the asymptotic character of
the distribution (2.26).

Furthermore, from (2.26) we obtain the other nice property of the incremental
quantile estimator: It is an asymptotically unbiased estimator of sample quantiles. It
is even a consistent estimator.

Unfortunately, as it was shown in [25], the probability for the algorithm to
fail is much smaller for the estimation of the median than for arbitrary quantiles.
Therefore, despite the nice properties of this estimator this simple generalization of
the incremental median estimation algorithm to arbitrary quantiles is not very useful
in practice. In order to amend this problem, we provide a modified algorithm based
on pre-sampling.

2.3.2.3 Incremental Quantile Estimation With Presampling iQPres

Here we introduce the algorithm iQPres (incremental quantile estimation with
pre-sampling) [25]. As already mentioned above, the failure probability for the
incremental quantile estimation algorithm in Sect. 2.3.2.2 is lower for the median
than for extreme quantiles. Therefore, to minimise the failure probability we
introduce an incremental quantile estimation algorithm with pre-sampling.

Assume we want to estimate the q-quantile. We pre-sample n values and
we simply take the l-th smallest value x(l) from the pre-sample for some fixed
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l ∈ {1, . . . ,n}. At the moment, l does not even have to be related to the q-quantile.
The probability that x(l) is smaller than the q-quantile of interest is

pl =
l

∑
i=0

(
n
i

)
·qi · (1− q)n−i . (2.28)

So when we apply pre-sampling in this way, we obtain the new (presampled)
distribution (order statistic) ξ n

l . From (2.28), we can immediately see that the
(1− pl)-quantile of ξ n

l is the same as the q-quantile of X . Therefore, instead of
estimating the q-quantile of X , we estimate the (1− pl)-quantile of ξ n

l . Of course,
this is only helpful, when l is chosen in such a way that the failure probabilities
for the (1− pl)-quantile are significantly lower than the failure probabilities for the
q-quantile. In order to achieve this, l should be chosen in such a way that (1− pl) is
as close to 0.5 as possible.

We want to estimate the q-quantile (0 < q < 1). Fix the parameters m, l,n. (For
an optimal choice see [25].)

1. Presampling: n succeeding values are stored in increasing order in a buffer bn
of length n. Then we select the l-th element in the buffer. The buffer is emptied
afterwards for the next presample of n values.

2. Estimation of the (1− pl)-quantile based on the l-th element in the buffer for pre-
sampling: this is carried out according to the algorithm described in Sect. 2.3.2.2.

The quantile is then estimated in the usual way, i.e.,

k = ⌈(m+L+R)∗ (1− pl)− l+ 0.5⌉ ,

r = (m+L+R)∗ (1− pl)− l+ 0.5− k,

q̂ = (1− r) ·ak−R+ r ·ak−R+1 (quantile estimator).

Of course, this does only work when the algorithm has not failed, i.e., the
corresponding index k is within the buffer of m values.

2.3.3 Experimental Results

In this section, we present an experimental evaluation of the presented algorithms
iQPres and the algorithm described in Sect. 2.3.1. The evaluation is based on
artificial data sets.

First, we consider estimations of the lower and upper quartile as well as the
median for different distributions:

• Exponential distribution with parameter λ = 4 (Exp(4))
• Standard normal distribution (N(0;1))
• Uniform distribution on the unit interval (U(0,1))
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Fig. 2.4 An example for an
asymmetric, bimodal
probability density function

Table 2.3 Estimation of the lower quartile q = 0.25

Distr. True quantile iQPres (2.23) MSE (iQPres) MSE (2.23)

Exp(4) 1.150728 1.152182 1.718059 2.130621E-5 2.675568
N(0;1) −0.674490 −0.672235 −0.678989 5.611009E-6 0.008013
U(0,1) 0.250000 0.250885 0.250845 1.541123E-6 4.191695E-5
GM −2.043442 −2.042703 0.185340 1.087618E-5 5.331730

Table 2.4 Estimation of the median q = 0.5

Distr. True quantile iQPres (2.23) MSE (iQPres) MSE (2.23)

Exp(4) 2.772589 2.7462635 5.775925 7.485865E-4 10.906919
N(0;1) 0.000000 6.8324E-4 −0.047590 1.786715E-5 0.009726
U(0,1) 0.500000 0.495781 0.499955 1.779917E-5 2.529276E-6
GM 0.434425 0.434396 0.117499 2.365156E-6 0.451943

• An asymmetric bimodal distribution given by a Gaussian mixture model (GM) of
two normal distributions. The cumulative distribution function of this distribution
is given by

F(x) = 0.3 ·FN(-3;1) + 0.7 ·FN(1;1)

where FN(µ;σ2) denotes the cumulative distribution function of the normal distri-
bution with expected value µ and variance σ2. Its probability density function is
shown in Fig. 2.4.

The quantile estimations were carried out for samples of size of 10,000 that were
generated from these distributions. We have repeated each estimation 1,000 times.
Tables 2.3–2.5 show the average over all estimations for our algorithm (iQPres with
a memory size of M = 150) and for the technique based on Theorem 2.1 where we
used the control sequence ct = 1

t . The mean squared error over the 1,000 repeated
runs is also shown in the tables.
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Table 2.5 Estimation of the upper quartile q = 0.75

Distr. True quantile iQPres (2.23) MSE (iQPres) MSE (2.23)

Exp(4) 5.545177 5.554385 5.062660 1.054132E-4 0.919735
N(0;1) 0.674490 0.674840 0.656452 3.600748E-7 0.003732
U(0,1) 0.750000 0.750883 0.749919 8.443136E-7 2.068730E-5
GM 1.366114 1.366838 0.027163 1.193377E-6 2.207112

For the uniform distribution, incremental quantile estimation based on (2.23)
and iQPres leads to very similar and good results. For the normal distribution, both
algorithms yield quite good results, but iQPres seems to be slightly more efficient
with a smaller mean square error. For the bimodal distribution based on the Gaussian
mixture model and a skewed distribution such as the exponential distribution, the
estimations for the algorithm based on (2.23) are more or less useless, at least when
no specific effort is invested to find an optimal control sequence {ct}t=0,1,.... iQPres
does not have any problems with these distributions. As already mentioned before, it
is also not required for iQPres that the sampling distribution is continuous whereas
it is a necessary assumption for the technique based on (2.23).

2.4 Hypothesis Tests and Change Detection

In this section we demonstrate how hypothesis testing can be adapted to an incre-
mental computation scheme for the cases of the χ2-test and the t-test. Moreover,
we discuss the problem of nonstationary data and explain various change detection
strategies with the main focus on the use of statistical tests.

2.4.1 Incremental Hypothesis Tests

Statistical test are methods to check the validity of hypotheses about distributions
or properties of distributions of random variables. Since statistical tests rely on
samples, they cannot definitely verify or falsify a hypothesis. They can only provide
probabilistic information supporting or rejecting the hypothesis under consideration.

Statistical tests usually consider a null hypothesis H0 and an alternative hypoth-
esis H1. The hypotheses may concern parameters of a given class of distributions,
for instance unknown expected value and variance of a normal distribution. Such
tests are called parameter tests. In such cases, the a priori assumption is that the data
definitely originate from a normal distribution. Only the parameters are unknown.
In contrast to parameter tests, nonparametric tests concern more general hypothesis,
for example, whether it is reasonable at all to assume that the data come from a
normal distribution.

The error probability that the test will erroneously reject the null hypothesis,
given the null hypothesis is true, is used as an indicator of the reliability of the test.
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Sometimes a so-called p-value is used. The p-value is smallest error probability
that can be admitted, so that the test will still reject the null hypothesis for a
given sample. Therefore, a low p-value is a good indicator for rejecting the null
hypothesis. Usually, the acceptable error probability α (α-error) should be specified
in advance, before the test is carried out. The smaller α is chosen, the more reliable
is the test when the outcome is to reject the null hypothesis. However, when α is
chosen too small, then the test will not tend to reject the null hypothesis, although
the sample might not speak in favor of it.

Some of the hypothesis tests can be applied to data streams, since they can be
calculated in an incremental fashion. We discuss in this section the incremental
adaptation of two statistical tests, the χ2-test and the t-test. Note, that the application
of hypothesis tests to data streams, using incremental computation or window
techniques, requires the repeated execution of the test. This can cause the problem
of multiple testing. The multiple testing problem is described later in this section.

2.4.1.1 χ2-test

The χ2-test has various applications. The principal idea of the χ2-test is the
comparison of two distributions. One can check whether two samples come from
the same distribution, a single sample follows a given distribution or also whether
two samples are independent.

Example 2.1. A die is thrown 120 times and the observed frequencies are as
follows: 1 is obtained 30 times, 2–25, 3–18, 4–10, 5–22, and 6–15. We are interested
in the question whether the die is fair or not.

The null hypothesis H0 for the χ2-test claims that the data follow a certain
(cumulative) probability distribution F(x). The distribution of the null hypothesis
is than compared to the distribution of the data. The null hypothesis can for instance
be a given distribution, e.g., a uniform or a normal distribution, and the χ2-test can
give an indication, whether the data strongly deviate from this expected distribution.
For an independence test for two variables, the joint distribution of the sample is
compared to the product of the marginal distributions. If these distributions differ
significantly, this is an indication that the variables might not be independent.

The main idea of the χ2-test is to determine how well the observed frequencies
fit the theoretical/expected frequencies specified by the null hypothesis. Therefore,
the χ2-test is appropriate for data from categorical or nominally scaled random
variables. In order to apply the test to continuous numeric data, the data domain
should be partitioned into r categories first.

First we discus the χ2 goodness of fit test. Here we assume to know from which
distribution the data come. Then the H0 and H1 hypotheses can be stated as follows:

H0: The sample comes from the distribution FX
H1: The sample does not come from the distribution FX
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Therefore the problem from Example 2.1 can be solved with the help of the χ2

goodness of fit test. Consequently, the H0 and H1 hypotheses are chosen as follows:

H0: P(X = 1) = p1 =
1
6 , . . . , P(X = 6) = p6 =

1
6

H1: P(X = i) ̸= 1
6 for at least one value i ∈ {1, . . . ,6}

Let X1, . . . ,Xn be i.i.d. continuous random variables and x1, . . . ,xn the observa-
tions from these random variables. Then the test statistic is computed as follows

χ2 =
r

∑
i=1

(Oi−Ei)
2

Ei
(2.29)

where Oi are the observed frequencies and Ei are the expected frequencies.
Since we are dealing with continuous random variables, to compute the observed

and expected frequencies we should carry out a discretisation of the data domain.
Let FX(x) be the assumed cumulative distribution function. The x-axis have to be

split into r pairwise disjoint sets or bin Si. Then the expected frequency in bin Si is
given by

Ei = n(FX (ai+1)−FX (ai)) , (2.30)

where [ai,ai+1) is interval corresponding to bin Si.
Furthermore, for the observed frequencies we obtain

Oi = ∑
xki∈Si

1. (2.31)

Oi is therefore the amount of observations in the i-th interval.
The statistic (2.29) has an approximate χ2-distribution with (r− 1) degrees of

freedom under the following assumptions: First, the observations are independent
from each other. Second, the categories—the bins Si—are mutually exclusive and
exhaustive. This means that no categories may have an expected frequency of zero,
i.e. ∀i ∈ 1, . . . ,r : Ei > 0. Furthermore, no more than 20% of the categories should
have an expected frequency less than five. If this is not the case, categories should be
merged or redefined. Note that this might also lead to a different number of degrees
of freedom.

Therefore, the hypothesis H0 that the sample comes from the particular distribu-
tion FX is rejected if

r

∑
i=1

(Oi−Ei)
2

Ei
> χ2

1−α , (2.32)

where χ2
1−α is the (1−α)-quantile of the χ2-distribution with (r− 1) degrees of

freedom.
Table 2.6 summarizes the observed and expected frequencies and computations

for Example 2.1. All Ei are greater than zero, even greater than 4. Therefore, there
is no need to combine categories. The test statistic is computed as follows:

r

∑
i=1

(Oi−Ei)
2

Ei
= 5+ 1.25+ 0.2+5+0.2+1.25= 12.9 (2.33)
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Table 2.6 Example 2.1 Number i
on the die Ei Oi

(Oi−Ei)
2

Ei

1 20 30 5
2 20 25 1.25
3 20 18 0.2
4 20 10 5
5 20 22 0.2
6 20 15 1.25

The obtained result χ2 = 12.9 should be evaluated with (1−α)-quantile of the χ2-
distribution. For that purposes table of the χ2-distribution ([7]). The corresponding
degrees of freedom are computed as explained above (r− 1) = (6− 1) = 5. For
α = 0.05 the tabled critical value for 5 degrees of freedom is χ2

0.95 = 11.07, which
is smaller than computed test statistic. Therefore, the null hypothesis is rejected at
the 0.05 significance level. For significance level 0.02, the critical value is χ2

0.98 =
13.388 and therefore the null hypothesis cannot be rejected at this level. This result
can be summarized as follows: χ2 = 12.9 with 5 degrees of freedom can be rejected
for all significance levels bigger than 0.024. This indicates that the die is unfair.

In order to adapt the χ2 goodness of fit test to incremental calculation, the
observed frequencies should be computed in an incremental fashion.

O(t)
i =

{
O(t−1)

i + 1 if xt ∈ Si,

O(t−1)
i otherwise.

(2.34)

The expected frequency should also be recalculated corresponding to the increasing
amount of observations.

E(t)
i =

E(t−1)
i

(t− 1)
t. (2.35)

Another very common test is the χ2 independence test. This test evaluates the
general hypothesis that two variables are statistically independent from each other.

Let X and Y be two random variables and (x1,y1) , . . . ,(xn,yn) are the observed
values of these variables. For continuous random variables, the data domains should
be partitioned into r and q categories, respectively. Therefore, the observed values
of X can be assigned to one of the categories SX

1 , . . . ,S
X
r and the observed values of

Y to one of the categories SY
1 , . . . ,S

Y
q . Then Oi j is the frequency of occurrence of the

observation (xki ,ykj ), where xki ∈ SX
i and ykj ∈ SY

j . Furthermore,

Oi• =
q

∑
j=1

Oi j (2.36)

and

O• j =
r

∑
i=1

Oi j (2.37)

denote the marginal observed frequencies.
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Table 2.7 Contingency table

X \ Y SY
1 . . . SY

j . . . SY
q

Marginal
of X

SX
1 O11 . . . O1 j . . . O1q O1•

...
...

...
...

...
...

...
SX

i Oi1 . . . Oi j . . . Oiq Oi•
...

...
...

...
...

...
...

SX
r Or1 . . . Or j . . . Orq Or•

Marginal of Y O•1 . . . O• j . . . O•q n

Table 2.7 illustrates the observed absolute frequencies. The total number of
observations in the table is n. The notation Oi j represents the number of observations
in the cell with index i j (i-th row and j-th column), Oi• the number of observations
in the i-th row and O• j the number of observations in the j-th column. This table is
called contingency table.

It is assumed that the random variables X and Y are statistically independent.
Let pi j be the probability of being in the i-th category of the domain of X and
the j-th category of the domain of Y . pi• and p• j are the corresponding marginal
probabilities. Then, corresponding to the assumption of independence for each pair

pi j = pi• · p• j (2.38)

holds. Equation (2.38) defines statistical independence. Therefore, the null and the
alternative hypotheses are as follows:

H0: pi j = pi• · p• j
H1: pi j ̸= pi• · p• j

Thus, if X and Y are independent, then the expected absolute frequencies are
given by

Ei j =
Oi• ·O• j

n
. (2.39)

The test statistic, again checking the observed frequencies against the expected
frequencies under the null hypothesis, is as follows.

χ2 =
r

∑
i=1

q

∑
j=1

(Oi j−Ei j)
2

Ei j
(2.40)

The test statistic has an approximate χ2-distribution with (r− 1)(s− 1) degrees of
freedom. Consequently, the hypothesis H0 that X and Y are independent can be
rejected if

r

∑
i=1

q

∑
j=1

(Oi j−Ei j)
2

Ei j
≥ χ2

1−α (2.41)
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Table 2.8 Contingency table

Values\variables X1 . . . Xj . . . Xm ∑
S1 O11 . . . O1 j . . . O1m O1•
...

...
...

...
...

...
...

Si Oi1 . . . Oi j . . . Oim Oi•
...

...
...

...
...

...
...

Sr Or1 . . . Or j . . . Orm Or•
∑ O•1 . . . O• j . . . O•m n

where χ2
1−α is the (1−α)-quantile of the χ2-distribution with (r− 1)(s− 1)

degrees of freedom.
For the incremental computation of Oi•, O• j, and Oi j corresponding formulae

must be developed. For the time point t and the new observed values (xt ,yt), the
incremental formulae are given by

O(t)
i• =

⎧
⎨

⎩
O(t−1)

i• + 1 if xt ∈ SX
i ,

O(t−1)
i• otherwise.

(2.42)

O(t)
• j =

⎧
⎨

⎩
O(t−1)
• j + 1 if yt ∈ SY

j ,

O(t−1)
• j otherwise.

(2.43)

O(t)
i j =

⎧
⎨

⎩
O(t−1)

i j + 1 if xt ∈ SX
i ∧ yt ∈ SY

j ,

O(t−1)
i j otherwise.

(2.44)

The χ2 goodness of fit test can be extended to a χ2 homogeneity test ([22]).
Whereas the χ2 goodness of fit test can be used only for a single sample, the χ2

homogeneity test is used to compare whether two or more samples come from the
same population.

Let X1, . . . ,Xm (m ≥ 2) be discrete random variables, or continuous random
variables discretised into r categories S1, . . . ,Sr. The data for each of the m samples
from random variables X1, . . . ,Xm (overall n values) are entered in a contingency
table. This table is similar to the one for the χ2 independence test.

The samples are represented by the columns and the categories by the rows of
Table 2.8. We assume that each of the samples is randomly drawn from the same
distribution. The χ2 homogeneity test checks whether m samples are homogeneous
with respect to the observed frequencies. If the hypothesis H0 is true, the expected
frequency in the i-th category will be the same for all of the m random variables.
Therefore, the null and the alternative hypotheses can be stated as follows:

H0: pi j = pi• · p• j
H1: pi j ̸= pi• · p• j.

From H0 follows that the rows are independent of the column.
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Therefore, the computation of an expected frequency can be summarized by

Ei j =
Oi• ·O• j

n
. (2.45)

Although the χ2 independence test and χ2 homogeneity test evaluate different
hypothesis, they are computed identically. Therefore, the incremental adaptation of
the χ2 independence test can also be applied to the χ2 homogeneity test.

Commonly in case of two samples the Kolmogorov–Smirnov test is used, since it
is an exact test and in contrast to the χ2-test can be applied directly without previous
discretisation of continuous distributions. However, the Kolmogorov–Smirnov test
does not have any obvious incremental calculation scheme. The Kolmogorov–
Smirnov test is described in Sect. 2.4.2.2.

2.4.1.2 The t-Test

The next hypothesis test for which we want to provide incremental computation is
the t-test. Different kinds of the t-test are used. We restrict our considerations to the
one sample t-test and the t-test for two independent samples with equal variance.

The one sample t-test evaluates whether a sample with particular mean could be
drawn from the population with known expected value µ0. Let X1, . . .Xn be i.i.d. and
Xi ∼ N

(
µ ;σ2

)
with unknown variance σ2. The null and the alternative hypotheses

for two-sided test are:

H0: µ = µ0, the sample comes from the normal distribution with expected value
µ0.

H1: µ ̸= µ0, the sample comes from a normal distribution with an expected value
differing from µ0.

The test statistic is given by

T =
√

n
X̄− µ

S
, (2.46)

where X̄ is the sample mean and S the sample standard deviation. The statistic (2.46)
is t-distributed with (n− 1) degrees of freedom. H0 is rejected if

t <−t1−α/2 or t > t1−α/2 (2.47)

where t1−α/2 is the (1−α/2)-quantile of the t-distribution with (n− 1) degrees of
freedom and t is the computed value of the test statistic (2.46), i.e. t =

√
n x̄−µ0

s .
One-sided tests are given by the following null and alternative hypotheses:

H0: µ ≤ µ0 and H1 : µ > µ0. H0 is rejected if t > t1−α .
H0: µ ≥ µ0 and H1 : µ < µ0. H0 is rejected if t <−t1−α .
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This test can be very easily adapted to incremental computation. For this purpose,
the sample mean and the sample variance have to be updated as in (2.2) and (2.6),
respectively, as described in Sect. 2.2. Note that the degrees of freedom of the
t-distribution should be updated in each step as well.

tn+1 =
√

n+ 1
x̄n+1− µ0

sn+1
(2.48)

Unlike previous notations we use here n+ 1 for the time point, since the letter
t is already used for the computed test statistic. Furthermore, as mentioned above
the (1−α/2)-quantile of the t-distribution with n degrees of freedom should be
used to evaluate the null hypothesis. However for n ≥ 30, the quantiles of the
standard normal distribution could be used as approximation of the quantiles of
the t-distribution.

The t-test for two independent samples is used to evaluate whether two
independent sample come from two normal distributions with the same expected
value. The two sample means x̄ and ȳ are used to estimate the expected values
µX and µY of the underlying distributions. If the result of the test is significant, we
assume that the samples come from two normal distributions with different expected
values. Furthermore, we assume that the variances of the underlying distributions
are unknown.

The t-test is based on the following assumptions:

• The samples are drawn randomly.
• The underlying distribution is a normal distribution.
• The variances of the underlying distributions are equal, i.e. σ2

X = σ2
Y .

Let X1, . . .Xn1 i.i.d. and Xi ∼ N
(
µX ;σ2

X

)
and Y1, . . .Yn2 i.i.d. and Yi ∼ N

(
µY ;σ2

Y

)

with unknown expected values and unknown variances and σ2
X = σ2

Y .
The null and the alternative hypothesis can be defined as follows:

H0: µX = µY , the samples come from the same normal distribution.
H1: µX ̸= µY , the samples come from normal distributions with different expected

values.

In this case, a two-sided test is carried out; however, similar to the one sample t-test
also a one-sided test can be defined.

The test statistic is computed as follows.

T =
X̄− Ȳ√

(n1−1)S2
X+(n2−1)S2

Y
n1+n2−2

√
n1n2

n1 + n2
(2.49)

where S2
X and S2

Y are the unbiased estimators for the variances of X and Y ,
respectively.

Equation (2.49) is a general equation for the t-test for two independent samples
and can be used in both cases of equal and unequal sample sizes.
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The statistic (2.49) has a t-distribution with (n1 + n2− 2) degrees of freedom.
Let

t =
x̄− ȳ√

(n1−1)s2
X+(n2−1)s2

Y
n1+n2−2

√
n1n2

n1 + n2
(2.50)

be the computed value of the statistic (2.49). Then the hypothesis H0 that the
samples come from the same normal distribution is rejected if

t <−t1−α/2 or t > t1−α/2, (2.51)

where t1−α/2 is the (1−α/2)-quantile of the t-distribution with (n1 + n2− 2)
degrees of freedom.

Similar to the one sample t-test, the t-test for two independent samples can be
easily computed in an incremental fashion, since the sample means and the variance
can be calculated in an incremental way. Here the degrees of freedom should also
be updated with the new observed values.

2.4.1.3 Multiple Testing

Multiple testing refers to the application of number of tests simultaneously. Instead
of a single null hypothesis, a tests for a set of null hypotheses H0, H1, . . . ,Hn are
considered. These null hypotheses do not have to exclude each other.

An example for multiple testing is a test whether m random variables X1, . . .Xm
are pairwise independent. This means, the null hypotheses are H1,2, . . . ,H1,m, . . . ,
Hm−1,m where Hi, j states that Xi and Xj are independent.

Multiple testing leads to the undesired effect of cumulating the α-error. The α-
error α is the probability to reject the null hypothesis erroneously, given it is true.
Choosing α = 0.05 means that in 5% of the cases the null hypothesis would be
rejected, although it is true. When k tests are applied to the same sample, then the
error probability for each test is α . Under the assumption that the null hypotheses
are all true and the tests are independent, the probability that at least one test will
reject its null hypothesis erroneously is

P(ℓ≥ 1) = 1−P(ℓ= 0) (2.52)

= 1− (1−α) · (1−α) . . . · (1−α) (2.53)

= 1− (1−α)k. (2.54)

ℓ is the number of tests rejection the null hypothesis.
A variety of approaches have been proposed to handle the problem of cumulating

the α-error. In the following, two common methods will be introduced shortly.
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The simplest and most conservative method is Bonferroni correction [21]. When
k null hypotheses are tested simultaneously and α is the desired overall α-error for
all tests together, then the corrected α-error for each single test should be chosen as
α̃ = α

k . The justification for this correction is the inequality

P

(
⋃

i

Ai

)
≤∑

i
P(Ai) . (2.55)

For Bonferroni correction, Ai is the event that the null hypothesis Hi is rejected,
although it is true. In this way, the probability that one or more of the tests rejects
its corresponding null hypothesis is at most α . In order to guarantee the significance
level α , each single test must be carried out with the corrected level α̃ .

Bonferroni correction is a very rough and conservative approximation for the true
α-error. One of its disadvantages is that the corrected significance level α̃ becomes
very low, so that it becomes almost impossible to reject any of the null hypotheses.

The simple single step Bonferroni correction has been improved by Holm [12].
The Bonferroni–Holm method is a multistep procedure in which the necessary
corrections are carried out stepwise. This method usually yields larger corrected
α-values than the simple Bonferroni correction.

When k hypotheses are tested simultaneously and the overall α-error for all tests
is α , for each of the tests the corresponding p-value is computed based on the sample
x and the p-values are sorted in ascending order.

p[1](x)≤ p[2](x)≤ . . .≤ p[k](x) (2.56)

The null hypotheses Hi are ordered in the same way.

H[1],H[2], . . . ,H[k] (2.57)

In the first step, H[1] is tested by comparing p[1] with α
k . If p[1] >

α
k holds, then H[1]

and the other null hypotheses H[2], . . . ,H[k] are not rejected. The method terminates
in this case. However, if p[1] ≤ α

k holds, H[1] is rejected and the next null hypothesis
H[2] is tested by comparing the p-value p[2] and the corrected α-value α

k−1 . If p[2] >
α

k−1 holds, H[2] and the remaining null hypotheses H[3], . . . ,H[k] are not rejected. If
p[2] ≤ α

k−1 holds, H[2] is rejected and the procedure continues with H[3] in the same
way.

The Bonferroni–Holm method tests the hypotheses in the order of their p-values,
starting with H[1]. The corrected αi-values α

k ,
α

k−1 , . . .α are increasing. Therefore,
the Bonferroni–Holm method rejects at least those hypotheses that are also rejected
by simple Bonferroni correction, but in general more hypotheses can be rejected.

2.4.2 Change Detection Strategies

Detecting changes in data streams has become a very important area of re-
search in many application fields, such as stock market, web activities, or sensors
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Fig. 2.5 An example of change detection for time series data from a waste water treatment plant

measurements, just to name a few. The main problem for change detection in
data streams is limited memory capacity. It is unrealistic to store the full history
of the data stream. Therefore, efficient change detection strategies tailored to the
data stream should be used. The main requirements for such approaches are:
low computational costs, fast change detection, and high accuracy. Moreover it is
important to distinguish between true changes and false alarms. Abrupt changes as
well as slow drift in the data generating process can occur. Therefore, a “good”
algorithm should be able to detect both kinds of changes.

Various strategies are proposed to handle this problem, see for instance [11] for
a detailed survey of change detection methods. Most of these approaches are based
on time window techniques [2, 15]. Furthermore, several approaches are presented
for evolving data streams as they are discussed in [8, 13, 14].

In this section, we introduce two types of change detection strategies: incremental
computation and window technique-based change detection. Furthermore, we put
the main focus on statistical tests. We assume to deal with numeric data streams. As
already mentioned in the introduction, two types of change are identified: concept
change and change of data distribution. We do not differentiate in this work between
both of them, since the distribution of the target variable will be changed in both
cases.

2.4.2.1 iQPres for Change Detection

The incremental quantile estimator iQPres from Sect. 2.3.2.3 can be used for change
detection [25]. In case, the sampling distribution changes, having a drift of the
quantile to be estimated as a consequence, such changes will be noticed, since the
simple version of iQPres without shifted parallel estimations will fail in the sense
that it is not able to balance the counters L and R any more.

In order to illustrate how iQPres can be applied to change detection, we consider
daily measurements for gas production in a waste water treatment plant over a period
of more than eight years. The measurements are shown in Fig. 2.5.



2 Incremental Statistical Measures 49

iQPress has been applied to this data set to estimate the median with a memory
size of M = 30. The optimal choice for the sizes of the buffers for pre-sampling
and median estimation is then n = 3 and m = 27, respectively. At the three time
points 508, 2,604, and 2,964, the buffer cannot be balanced anymore, indicating
that the median has changed. These three time points are indicated by vertical lines
in Fig. 2.5. The arrows indicate whether the median is increased or decreased. An
increase corresponds to an unbalanced buffer with the right counter R becoming
too large, whereas a decrease leads to an unbalanced buffer with the left counter L
becoming too large. The median increases at the first point at 508 from 998 before
and 1,361 after this point. At time point 2,604, the median increases to 1,406 and
drops again to 1,193 at time point 2,964.

Note that algorithms based on Theorem 2.1 mentioned in Sect. 2.3.1 are not
suitable for change detection.

By using iQPres for change detection in the data distribution, we assume that the
median of the distribution changes with the time, however, if this is not the case
and only another parameter like the variance of the underlying distribution changes,
other strategies for change detection should be used.

2.4.2.2 Statistical Tests for Change Detection

The theory of hypothesis testing is the main background for change detection.
Several algorithms for change detection are based on hypothesis tests.

Hypothesis tests could be applied to change detection in two different ways:

• Change detection through incremental computation of the tests: by this approach
the test is computed in an incremental fashion, for instance, as it is explained
in Sect. 2.4.1. Consequently the change can be detected if the test starts to yield
different results as before.

• Window techniques: by this approach the data stream divided into time windows.
A sliding window could be used as well as nonoverlapping windows. In order
to detect potential changes, we need either to compare data from an earlier
window with data from newer one or to test only the new data (for instance,
whether the data follow a known or assumed distribution). When the window
size is not too large, it is not necessary to be able to compute the tests in
an incremental fashion. Therefore, we are not restricted to tests that render
themselves to incremental computations, but many other tests could be used.
Hybrid approaches combining both techniques are also possible. Of course,
window techniques with incremental computations within the window will lead
to less memory consumptions and faster computations.

We will not give a detailed description for change detection based on incremental
computation here, since the principles of these methods are explained in Sect. 2.4.1.
However, the problem of multiple testing as discussed in Sect. 2.4.1 should be taken
into account when a test is applied again and again over time. Even if the underlying
distribution does not change over time, any test will erroneously reject the null
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Fig. 2.6 General scheme of a change detection algorithm based on time windows and statistical
tests

hypothesis of no change in the long run if we only carry out the test often enough.
Different approaches to solve this problem are presented in Sect. 2.4.1.3. Another
problem of this approach is the “burden of old data”. If a large amount of data has
been analyzed already and the change is not very drastic, it may happen that the
change will be detected with large delay or not detected at all when a very large
window is used. On that account it may be useful to re-initialize the test from time
to time.

To detect changes with by window technique, we need to compare two samples
of data and have to decide whether the hypothesis H0 that they come from the same
distribution is true.

First we will present a general meta-algorithm for change detection based on
a window technique, without any specific fixed test. This algorithm is presented
in Fig. 2.6. The constant step specifies, after how many new values the change
detection should checked again.

This approach follows an simple idea: when the data from two subwindows of
W are judged as “distinct enough”, the change is detected. Here “distinct enough”
is specified by the selected statistical test for distribution change. In general, we
assume the splitting of W into two subwindows of equal size. Nevertheless, any
“valid” splitting can be used. Valid is meant in terms of the amount of data that is
needed for the test to be reliable.

However, by a badly selected cut point the change can be detected with large
delay as Fig. 2.7 shows. The rightmost part indicates a change in the data stream.
As the change occurs almost at the end of the subwindow W1, it is most likely that
the change remains at first undetected. Of course, since the window will be moved
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Fig. 2.7 Subwindows
problem

Fig. 2.8 Modification of the
algorithm for change
detection to avoid the
sub-windows problem

forward with new data points arriving, at some point the change will be detected,
but it may be from essential interest, to detect the change as early as possible.

To solve this problem, we modify the algorithm in Fig. 2.6 in the following way:
instead of splitting window W only once, the splitting is carried out several times.
Figure 2.8 shows the modified part of the algorithm in Fig. 2.6 starting at step 9.

How many times the window should be split, should be decided based on the
required performance and precision of the algorithm. We can run the test for each
sufficiently large subwindow of W , although the performance of the algorithm will
decrease, or we can carry out fixed number of splits. Note that also for the windows
technique-based approach, attention should be paid to the problem of multiple
testing (see Sect. 2.4.1.3). Furthermore, we do not specify here the effect of the
detected change. The question whether the window should be re-initialized depends
on the application. A change in the variance of the data stream might have a strong
effect on the task to be fulfilled with the online analysis of the data stream or it might
have no effect as long as the mean value remains more or less stable.

For the hypothesis test in step 10, of the algorithm, any appropriate test for the
distribution change can be chosen. Since we do not necessarily have to apply an
incremental scheme for the hypothesis test, the Kolmogorov–Smirnov test can also
be considered for change detection. The Kolmogorov–Smirnov test is designed to
compare two distribution, whether they are equal or not. Therefore, two kinds of
questions could be answered with the help of the Kolmogorov–Smirnov test:

• Does the sample arise from a particular known distribution?
• Do two samples coming from different time windows have the same distribution?

We are particularly interested in the second question. For this purpose, the two
sample Kolmogorov–Smirnov goodness-of-fit test should be used.

Let X1, . . . ,Xn and Y1, . . . ,Ym be two independent random samples from distribu-
tions with cumulative distribution functions FX and FY , respectively. We want to test
the hypothesis H0 : FX = FY against the hypothesis H1 : FX ̸= FY . The Kolmogorov–
Smirnov statistic is given by

Dn,m = sup
t
|SX ,n (x)− SY,m (x)| , (2.58)
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where SX ,n (x) and SY,m (x) are corresponding empirical cumulative distribution
function4 of the first and second sample. H0 is rejected at level α if

√
nm

m+ n
Dn,m > Kα (2.60)

where Kα is the α-quantile of the Kolmogorov distribution.
To adapt the Kolmogorov–Smirnov test as a change detection algorithm, first

the significance level α should be chosen (we can also use for instance the
Bonferroni correction to avoid the multiple testing problem). The value of Kα needs
either numerical computation or should be stored in a table.5 Furthermore, values
from the subwindows W0 and W1 represent two samples x1, . . . ,xn and y1, . . . ,ym.
Then the empirical cumulative distribution functions SX ,n (x) and SY,m (x) and the
Kolmogorov–Smirnov statistic should be computed. Note that for the computation
of SX ,n (x) and SY,m (x) in case of unique splitting the samples have to be sorted only
initially, afterward the new values have to be inserted and the old values must be
deleted from the sorted lists. In case of multiple splitting we have to decide either to
sort each time from scratch or to save sorted lists for each kind of splitting.

An implementation of the Kolmogorov–Smirnov test is for instance available in
the R statistics library (see [4] for more information).

Algorithm 2.8 based on the Kolmogorov–Smirnov test as the hypothesis test in
step 10 has been implemented in Java using R-libraries and has been tested with
artificial data. For the data generation process, the following model was used:

Yt =
t

∑
i=1

Xi. (2.61)

We assume the random variables Xi to be normally distributed with expected value
µ = 0 and variance σ2, i.e. Xi ∼ N

(
0, σ2

)
. Here Yt is a one dimensional random

walk [24]. To make the situation more realistic, we consider the following model:

Zt ∼ N (yt ,1) . (2.62)

The process (2.62) can be understood as a constant model with drift and noise, the
noise follows a normal distribution whose expected value equals the actual value of
the random walk and whose variance is 1.

4Let xr1 ,xr2 , . . .xrn be a sample in ascending order from the random variables X1, . . .,Xn. Then the
empirical distribution function of the sample is given by

SX ,n (x) =

⎧
⎨

⎩

0 if x≤ xr1 ,
k
n if xrk < x≤ xrk+1 ,
1 if x > xrk .

(2.59)

5This applies also to the t-test and the χ2-test.
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Fig. 2.9 An example of change detection for the data generated by the process (2.62)

The data were generated with the following parameters: σ1 = 0.02, σ2 = 0.1.
Therefore, the data have a slow drift and are furthermore corrupted with noise.

Algorithm 2.8 has been applied to this data set. The size of the window W
was chosen to be 500. The window is always split into two subwindows of
equal size, i.e., 250. The data are identified by the algorithm as nonstationary.
Only very short sequences are considered to be stationary by the Kolmogorov–
Smirnov test. These sequences are marked by the darker areas in Fig. 2.9. In the
interval, [11,14,414,445] stationary parts are mixed with occasionally occurring
small nonstationary parts. For easier interpretation, we joined these parts to one
larger area. Of course, since we are dealing with the window, the real stationary
areas are not exactly the same as shown in the figure. The quality of change detection
depends on the window. For slow gradual changes in the form of concept drift a
larger window is a better choice, whereas for abrupt changes in terms of a concept
shift a smaller window is of advantage.

2.5 Conclusions

We have introduced incremental computation schemes for statistical measures or in-
dices like the mean, the median, the variance, the interquartile range, or the Pearson
correlation coefficient. Such indices provide information about the characteristics
of the probability distribution that generates the data stream. Although incremental
computations are designed to handle large amounts of data, it is not extremely useful
to calculate the above mentioned statistical measures for extremely large data sets,
since they quickly converge to the parameter of the probability distribution they are
designed to estimate as can be seen in Figs. 2.1–2.3. Of course, convergence will
only occur when the underlying data stream is stationary.

It is therefore very important to use such statistical measure or hypothesis
tests for change detection. Change detection is a crucial aspect for nonstationary
data streams or “evolving systems.” It has been demonstrated in [26] that naı̈ve
adaption without taking any effort to distinguish between noise and true changes
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of the underlying sample distribution can lead to very undesired results. Statistical
measures and tests can help to discover true changes in the distribution and to
distinguish them from random noise.

Applications of such change detection methods can be found in areas like quality
control and manufacturing [16,20], intrusion detection [27] or medical diagnosis [5].

The main focus of this chapter are univariate methods. There also extensions to
multidimensional data [23] which are out of the scope of this contribution.
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